
Appendix

Modeling the Impact of RGGI on Pennsylvania’s Power Grid:

Costs, Emissions, and Leakage

Section A provides a detailed overview of the simulation model. Section B presents the

functional forms used in the simulation model. Section C discusses the parameter values and

data sources used for calibration, the assumptions and data sources used to generate emissions

estimates, and our model calibration results. In Section D we outline the assumptions regarding

the dynamic trends that underlie our simulation results. Section E validates our baseline against

historical data. Pre-existing polices that we account for in our analysis are described in Section F.

Finally, Section G presents additional results not reported in the main text.

A Model Overview
�e RGGI+PJM Policy Analysis Model (RPAM) is a multi-market numerical simulation model

that combines: 1. a transportation model of the PJM power system; 2. the endogenous supply

of new generation capacity within PJM; 3. the importation of Renewable Energy Credits (RECs)

from outside of PJM; 4. the supply of CO
2
abatement from non-PJM Regional Greenhouse Gas

Initiative (RGGI) states; and 5. the supply/demand of banked CO
2
allowances from current RGGI

market participants. Parts 1-3 of the model are calibrated using data for 2016 and 2017 collected

from over a dozen sources and is validated using 2018 data across several dimensions: REC prices,

locational marginal prices (LMPs), predicted new capacity, and generation mix. Parts 4 and 5

are jointly econometrically estimated using historical data on emissions, caps, permits sold at

auction, and allowance price data from RGGI. RPAM operates on an annual time-step and we

simulate outcomes from 2018 to 2030. �e RPAM domain is depicted in Figure A.1.
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Figure A.1: RGGI+PJM Policy Analysis Model (RPAM) Domain
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As shown in Figure A.1, RPAM consists of �ve regions (purple, blue, yellow, green, and red)

which comprise the wholesale electricity market operated by PJM as well as the CO
2
emissions

released by RGGI states that are not in PJM (solid orange). In addition, a subset of states are

members of RGGI and are also wholly or partly contained with PJM’s system boundaries (orange

outline) and allowances added to the RGGI allowance bank prior to 2022 are assumed to be held

by market participants within all current RGGI states (solid orange or outline orange).

�e black dashed lines depict the �ve aggregate transmission lines which link these �ve

regions: A. line 12 connects West Pennsylvania and East Pennsylvania; B. line 23 connects East

Pennsylvania and East RPJM; C. line 24 connects East Pennsylvania and Central RPJM; D. line

45; and, E. line 15 connects West Pennsylvania and West RPJM. �ese �ve lines are constructed

based upon visual inspection of the transmission linkages between the �ve regions. �ere are

no direct links between East Pennsylvania and West RPJM, West Pennsylvania and East RPJM,

West Pennsylvania and Central RPJM, East RPJM to Central RPJM, or East RPJM to West RPJM.

While these lines capture the aggregate physical location of transmission lines across PJM, the
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transmission constraints are numerically calibrated to replicate the generation-weighted average

inter-regional di�erence in LMPs. RPAM also has 96 load segments, constructed from 8,784 hours

in 2016 (a leap year) and 8,760 hours in 2017. Within each PJM region, we assume that demand

for electricity is partially inelastic across 96 load segments. Details on how we construct the �ve

aggregate regions, 96 load segments, demand elasticity and transmission lines are discussed in

Sections B.5 and C.1.

�e supply side of the PJM wholesale electricity market considers the economic decisions

of 843 representative existing generation units (EGUs) which have been aggregated from a

population of 3,095 EGUs located within PJM and whose locations are known. Fuel costs facing

EGUs vary across region and are allowed to vary daily re�ecting correlation with load. Given

predicted generation from representative EGUs, generation and emissions can be descaled to the

full population of EGUs across the landscape. RPAM also allows for endogenous new capacity

expansion in natural gas combined cycle (NGCC), solar, and wind. Details on calibrations for the

supply side can be found in Section C.2.

B Functional Forms

B.1 Regional Demand for Electricity

�e total bene�t or willingness to pay by load serving entities in region i at any given hour

in load segment l are given by:

TBil (dil) = cildil −
nil
2

(dil)
2 , (1)

where dil is the electricity demand in region i at a representative hour in load segment l, and nil

and cil are the slope and intercept, respectively of the linear inverse demand curve implied by the

�rst-order conditions for the numerical model with respect to dil: pil = cil − nildil, where pil is

the price of electricity in region i at load segment l.
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B.2 Supply of Electricity from Existing Generation

�e variable costs from existing representative electric generating unit (EGU) j located in

region i and supplying electricity at any given hour in load segment l are given by:

V CE
jl

(
gEjl
)

= bEjlg
E
jl +

mE
jl

2

(
gEjl
)2
, (2)

where gEjl is the electricity supplied by existing EGU j in a representative hour in load segment l,

mE
jl and b

E
jl are, respectively, the slope and intercept of the linear inverse supply curve for existing

EGU j in region i at any given hour in load segment l implied by the �rst-order conditions for

the numerical model with respect to gEjl : pil = bEjl − mE
jlg

E
jl . Variable costs include fuel costs,

operation and maintenance costs, and, for some existing EGUs, the costs of complying with Title

IV of the Clean Air Act and state nuclear subsidies.

In addition, each representative existing EGU j has a limit on the amount of power it can

supply in a representative hour in each load segment l re�ecting its available e�ective capacity:

gEjl ≤ KE
jl , (3)

where KE
jl is EGU j’s e�ective capacity at any given hour in load segment l.

B.3 New Capacity and Supply of Electricity from New Generation

Each year, we allow as many as 42 (= 3 × 14) new EGUs j to be added to the model. In

particular, we consider three di�erent technologies that can be added in each of the 14 states

within PJM in each year. �e technologies we consider are NGCC, wind, and solar, which we

believe are the technologies most likely to be added in the next few years due to current market

and regulatory drivers. We allow these to enter by state since state Renewable/Alternative

Energy Portfolio Standards (RPSs) are important determinants of renewable expansion across

states within PJM. �e variable costs from operating a new EGU j and supplying electricity at
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any given hour in load segment l are given by:

V CN
jl

(
gNjl
)

= bNjlg
N
jl , (4)

where gNjl is the electricity supplied by new EGU j in a representative hour in load segment l, bNjl

is the private marginal operating cost for new EGU j in a representative hour in load segment l.

Additionally, each new EGU j has a limit on the amount of electricity it can produce at any

given hour in a load segment, re�ecting its available e�ective capacity:

gNjl ≤ KN
j , (5)

whereKN
j is the e�ective capacity of new EGU j at any given hour. �is is calculated as follows:

KN
j = K̄N

j γ
N
j , where K̄

N
j is the total amount of new nameplate capacity that is expanded for

new EGU j, measured in MW, and γNj is the utilization factor for new EGU j.5

Finally, new generation also accrues a capacity cost from adding each MW of new capacity

for EGU j in a given year that is given by:

CCN
j

(
K̄N
j

)
= CN

j K̄
N
j , (6)

where CN
j is the annual cost of adding one MW of new capacity to new EGU j per year. �ese

annualized �xed costs accrue in years subsequent to the vintage year in which new capacity is

added. Capacity costs includes the purchase costs of capital, the costs from purchasing or leasing

land, �nancing costs, search costs, and all costs associated with new capacity permi�ing and

approval.

5
Some states have EGUs that span multiple load regions in the model (Pennsylvania, Maryland, New Jersey, and

Virginia). For these states we assume that generation from new EGUs is allocated between the multiple regions in

proportion to the 2016 share of a state’s generation within each load region of which it is a member to that state’s

total generation.

5



B.4 External Renewable Energy Certi�cates

We allow Renewable Energy Certi�cates (RECs) generated by EGUs outside of PJM to be

used for compliance with various state Alternative Energy/Renewable Portfolio Standards (RPSs),

which o�en have multiple tiers, within PJM. Let rqst be the amount of tier t RECs that an EGU q

outside of PJM supplies to state s in PJM in a given year. �e total amount of external RECs that

EGU q can supply in a given year across all the states with RPSs within PJM must satisfy:

∑
st∈ST q

rqst ≤ rq, (7)

where rq is the total amount of external RECs that external EGU q can supply to a subset of states

with RPSs in PJM in a given year across all tiers and ST q is the subset of states and tiers for which

external EGU q can supply external RECs. rq = r̄qγq, where r̄q is the total amount of external

RECs that external EGU q can supply to all states (including states that are outside of PJM) in a

given year, and γq is the percentage of r̄q that indicates the total amount of external RECs that

external EGU q can supply only to states in PJM.

�e constraints in (7) ensure that external RECs are distributed to states within PJM with the

highest REC prices, second highest, and so on, until rq is exhausted. A�er the model is solved,

aggregate surplus by state is adjusted by the costs of external RECs purchased by the state in

light of the REC prices predicted by the model.

B.5 Transmission Network

Net power �ow into region i from another region h at any given representative hour in load

segment l must not exceed the e�ective capacity constraint of the transmission line between the

two regions in that load segment:

−f̄ihl ≤ fihl ≤ f̄ihl (8)
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where fihl is the net �ow of electricity into region i from region h at load segment l and f̄ihl is the

maximum e�ective transmission capacity between region i and h at load segment l, all of which

are measured in MWh. �e sign indicates the direction of the power �ow, with a negative sign

denoting power is �owing away from i and a positive sign that power is �owing into i. f̄ihl is

calculated as follows: f̄ihl = VihAihl, where Vih is the sum of voltage (measured in volts) across

all transmission lines connecting region i and region h, and Aihl is the e�ective current between

region i and region h during load segment l in amperes.

B.6 CO2 Emissions from RGGI States Outside of PJM

�e total emissions bene�t from covered EGUs in RGGI states that are not in PJM is given

by:
6

TBNPJM
(
ENPJM

)
= cNPJMENPJM − nNPJM

2

(
ENPJM

)2
, (9)

where ENPJM
is the CO2 emissions from covered EGUs in RGGI states outside of PJM, nNPJM

and cNPJM are the slope and intercept, respectively, of the linear inverse demand curve for

covered emissions from non-PJM RGGI states in a given year implied by the �rst-order condition

with respect to ENPJM
: pRGGI = cNPJM − nNPJMENPJM

, where pRGGI is the RGGI allowance

price in that year.

B.7 Supply/Demand of Banked Allowances

�e total bene�t to holders of allowances in a given year from allowances that have been

banked from all previous years is given by:

TBB
(
B, B̄

)
= cB

(
B̄
)
B − nB

2
(B)2 , (10)

6
Observe that if the marginal covered emissions bene�t (the derivative of (9) with respect to ENPJM

) is set

equal to marginal costs of covered emissions of zero, a ceteris paribus unregulated or baseline covered emissions

level can be obtained, ENPJM
0 . Abatement can then be de�ned as ANPJM = ENPJM

0 −ENPJM
and the marginal

costs of abatement from covered EGUs in non-PJM RGGI states can be de�ned as:

(
cNPJM − nNPJMENPJM

0

)
+

nNPJMANPJM
. We report (9) here as ENPJM

is what is solved for in the model and because the marginal bene�t

of covered emissions is what we directly estimate from historical data as further discussed below.
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where B is the total amount of RGGI allowances in the RGGI allowance bank in a given year, nB

and cB ≡ cB
(
B̄
)
are the slope and intercept, respectively, of the linear inverse demand curve

for RGGI banked allowances, implied by the �rst-order condition for the numerical model with

respect to B: pRGGI = cB − nBB. As discussed further below, nB is �xed across years whereas

cB ≡ cB
(
B̄
)
is a function of the bank account balance at the end of the previous year, B̄. Permits

are withdrawn from (added to) the bank in a given year if B̄ −B > 0 (B̄ −B < 0). �e starting

2020 value for B̄ is calculated from historical RGGI auction and cap data prior to 2020. A�er 2020,

the prior bank account balance is de�ned as: B̄ = By−1, where By−1 is the bank account balance

at the end of the previous year.

B.8 Market Clearing Conditions

B.8.1 Electricity Market

�e electricity market clears in region i at a representative hour in load segment l when the

following constraint is satis�ed:

∑
j∈JE

i

gEjl +
∑
j∈JN

i

gNjl +
∑
h∈Li

fihl ≥ dil (1 + εl) for all i, l, (11)

where J E
i is the set of all existing EGUs in PJM region i, J N

i is the set of all new EGUs in PJM

region i, Li is the set of all nodes that are connected to i, and εl is aggregate loss in any given hour

in load segment l as a percentage of demand in region i for that hour, which re�ects transmission

and distribution system losses as well as the di�erence in virtual increment o�ers and decrement

bids, as discussed further below.

B.8.2 Renewable Energy Credit Markets

Several states s within PJM have multiple tiers t (e.g., tier 1, tier 2 and solar RPS) of

Renewable/Alternative Energy Portfolio Standards (RPS) which mandate that at least a certain

fraction of generation in a given year come from ‘numerator EGUs’ (eligible EGUs) for a given

state-tier st relative to total generation in that state. Similar to other mandate and trade systems

(e.g., the Renewable Fuel Standard, Corporate Average Fuel Economy Standards), state-tier RPSs
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allow for restricted trade in virtual renewable energy credits (RECs) among market participants

that are eligible (and in some cases, required) to participate under each state-tier RPS st. �e REC

market clears for each RPS state-tier combination st in a given year according to:

∑
j∈Jst

∑
l δlgjl +

∑
q∈Qst

rqst∑
j∈Js

∑
l δlgjl

≥ R̄st, (12)

where δl is number of hours in load segment l, gjl (no superscript) is generation from new or

existing EGU j in a representative hour in load segment l, R̄st is the RPS target of tier t in state s

in a given year,Qst is the subset of external EGUs which can supply external RECs for compliance

with the st RPS standard, Jst is the subset of eligible new and existing EGUs in PJM under state-

tier RPS constraint st, and Js is the subset of eligible and ineligible new and existing EGUs for

each state s (which is common across tiers for all states in PJM and includes all the existing and

new EGUs in that state); see Section F.5 for further details.

B.8.3 RGGI Allowance Market

So far all states that have joined RGGI have chosen to allow inter-state allowance trading

among RGGI market participants. As a result there is a single market for RGGI allowances which

clears in a given year according to:

∑
j∈JRGGI

∑
l

δlφ
CO2
j gjl + ENPJM +

(
B − B̄

)
≤

∑
s∈SRGGI

ĒRGGI
s , (13)

where ĒRGGI
s is the adjusted allowance budget assigned to state s consistent with its membership

in RGGI, JRGGI is the subset of covered new and existing EGUs in PJM that are also in states that

are members of RGGI, SRGGI is the subset of states that are members of RGGI in a given year,

and φ
CO2
j is the CO2 emissions factor of existing or new EGU j.

B.8.4 Characterization of the Competitive Equilibrium

�ere are multiple ways to numerically solve for the competitive equilibrium solution which

e�ectively re�ects: 1. the PJM system operator’s optimal hourly dispatch decision re�ecting a

transportationmodel; 2. the decentralized annual power system capacity investment equilibrium;
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3. the decentralized REC equilibrium; and 4. the decentralized RGGI allowance market

equilibrium, conditional on all other (exogenous) pre-existing policies. According to the First

FundamentalWelfare�eorem and the assumptions of ourmodel themost direct solutionmethod

involves solving 1 across all hours of the year, but allowing for new capacity investment and

conditional on market clearing in the REC and RGGI allowance markets. In this case the objective

function to maximize is:

∑
i

∑
l

δl

(
cildil −

nil
2

(dil)
2
)
−
∑
j

[
CN
j K̄

N
j +

∑
l

δl

(
bEjlg

E
jl +

mE
jl

2

(
gEjl
)2

+ bNjlg
N
jl

)]

+

[
cNPJMENPJM − nNPJM

2

(
ENPJM

)2
]

+

[
cBB − nB

2
(B)2

]
(14)

given (1), (2), (4), (6), (9), and (10). �us, a competitive equilibrium is the quantities and (shadow)

prices that are returned from maximizing (14) (choosing dil for all i, l, g
E
jl for all j, l, g

N
jl for all

j, l, rqst for all q, s, t, K̄
N
j for all j, ENPJM

, B and fihl for all i, h, l) subject to (3) for all j, l, (5)

for all j, l, (7) for all q, s, t, (8) for all i, h, l, (11) for all i, l, (12) for all s, t, (13), and non-negativity

constraints on dil, g
E
jl , g

N
jl , rqst, K̄

N
j , ENPJM

, and B.

�e competitive equilibrium prior to Pennsylvania joining RGGI, which provides a common

baseline prior to 2022 and serves as our baseline counterfactual between 2022 and 2030, is the

competitive equilibrium as de�ned above where, in equation (13), the set JRGGI includes covered

existing and new EGUs within RGGI member states prior to Pennsylvania’s entry and the the set

SRGGI includes RGGI member states prior to Pennsylvania’s entry. �e set of RGGI member

states di�ers across time. Prior to 2020, RGGI member states include: Maine, New Hampshire,

Vermont, Massachuse�s, Connecticut, Rhode Island, New York, Delaware, and Maryland. In 2020

New Jersey rejoins RGGI and in 2021 Virginia also joins.

�e competitive equilibrium with Pennsylvania joining RGGI is the competitive equilibrium as

de�ned above where, in equation (13), the set JRGGI includes covered existing and new EGUs

within RGGI member states, including Pennsylvania, the set SRGGI also includes Pennsylvania

beginning in 2022.
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C Data and Calibration
In this section, we discuss the data and intermediate steps to calibrate the parameters. We

calibrate our model primarily using 2016 and 2017 historical data. Since we use up-to-date EGUs

data in 2016 from various data sources, our model does not include capacity expansion in 2016.

In 2017, our model allows capacity expansion of new NGCC, wind and solar EGUs to be added

to the set of EGUs that can be dispatched by PJM. Finally, the non-PJM RGGI marginal bene�ts

from emissions and the marginal bene�ts of banked allowances are estimated using more recent

data from the inception of RGGI in 2009 through 2019. �e parameters of the model can be

divided into three types: 1. those that are analytically calibrated given analytic expressions and

collected data, 2. those that are estimated given statistical models and collected data, and 3. those

that are numerically calibrated by minimizing the Euclidean distance between model predictions

and collected data. In this section, we begin by explaining all of the parameters that are either

analytically calibrated or estimated for each of the sectors/agents speci�ed in the proceeding

section. Following, this we discuss the multi-step numerical calibration method we use to recover

the remaining model parameters. We then discuss how emissions are calculated from predicted

model output. Finally, we compare the results from our calibrated baseline for the years 2016 and

2017 against observed 2016 and 2017 data.

C.1 Regional Demand for Electricity

C.1.1 Load Regions

�e�ve regions that comprise PJM in RPAM are constructed by aggregating load zones in PJM

based on similarity in day-ahead hourly locational marginal prices (LMPs) in 2016 from the Day-

Ahead Hourly LMPs for 2016 dataset (last accessed 05/15/2017 online using PJM Data Miner 2 at:

h�ps://dataminer2.pjm.com/feed/da hrl lmps), and geographical proximity. �ese �ve regions

are: 1. West Pennsylvania (purple coloration in Figure A.1), which includes West Penn Power

(the Pennsylvania part of Allegheny Power), Penn Power (the Pennsylvania part of American

Transmission Systems Inc), Duquesne Light Company, and the Pennsylvania Electric Company; 2.
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East Pennsylvania (blue), which includes theMetropolitan Edison Company, PPL Electric Utilities

Corporation, and the PECO Energy Company; 3. East RPJM (yellow), which includes Atlantic

City Electric Company, Jersey Central Power and Light Company, Public Service Electric and Gas

Company, Delmarva Power and Light Company and Rockland Electric Company; 4. Central RPJM

(green), which includes Baltimore Gas and Electric, Dominion, and Potomac Electric; and, 5. West

RPJM (red), which includes the non-Pennsylvania part of Allegheny Power, American Electric

Power Company, the Ohio part of American Transmission Systems Inc, the Commonwealth

Edison Company, Duke Energy Ohio and Kentucky, East Kentucky Power Cooperative Inc, and

the Dayton Power and Light Company.

�e �rst �ve panels of Figure A.2 report the results of locally weighted regressions (assuming

a bandwidth of 0.8) of hours in the year sorted from lowest to highest load (see below for data

on load) against day-ahead hourly LMPs for each of the original load zones that form the �ve

RPAM PJM regions. Panel A shows that the average LMP in West Pennsylvania in the lowest

demand hour is as low as approximately $15/MWh and the average LMP in the highest demand

hour is more than $50/MWh. �e median LMP is around $27/MWh. Similarly, panel B shows

that the average LMP in the lowest demand hour is close to $5 per MWh and average LMP in

the highest demand hour is over $50. �e median LMP is approximately $22. Overall, West

Pennsylvania observes higher LMPs than East Pennsylvania, although there is some convergence

in LMPs during high demand periods. Panel C shows that the average LMP in the lowest demand

hour is as low as $11 per MWh and the average LMP in the highest demand hour is more than $60

for the DPL zone and more than $50 for the other zones. �e median LMP is around $22. Panel D

shows that LMPs in the Central RPJM region are the most spread out with an average LMP in the

low demand hour of approximately $18 per MWh and an average LMP near $69 in the highest

demand hour. �e median LMP lies just above $30. Finally, panel E shows that the average LMP

in the lowest demand hour is nearly $15 per MWh. �e LMPs in the 2,000 highest demand hours

in West RPJM are fairly spread out; at the highest demand hour the LMP is approximately $55 in

Ohio Edison and $ 43 in East Kentucky. �e median LMP is around $27. Overall, Central RPJM
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observes higher LMPs than West RPJM, which in turns observes higher LMPs than East RPJM.

Panel F of FigureA.2 reports the results of locallyweighted regressions (assuming a bandwidth

of 0.8) of hours in the year sorted from lowest to highest load against load weighted average day-

ahead hourly LMPs for the �nal �ve PJM regions in RPAM. Central RPJMhas higher average LMPs

than all other regions. West Pennsylvania and West RPJM have the next highest average LMPs

in low to moderate demand hours, followed by East Pennsylvania and East RPJM. While there

appears to be some convergence—across east and west–between Pennsylvania and RPJM at low

and moderate demand hours, this breaks down in high demand hours. In higher demand periods

West Pennsylvania observes higher average LMPs than West RPJM whereas East RPJM observes

higher average LMPs than East Pennsylvania. In totum, in high demand hours, excluding Central

RPJM, East RPJM has higher average LMPs, followed by East Pennsylvania, West Pennsylvania,

andWest RPJM. In general, the eastern part of PJM observes lower LMPs and overall is an exporter

of electricity compared to the central and western parts of PJM.
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Figure A.2: Day-Ahead locational marginal prices in 2016 Across PJM. Panels from top-le�: A. West

Pennsylvania, B. East Pennsylvania, C. East Rest of PJM, D. Central Rest of PJM, E. West Rest of PJM,

and F. Load Weighted Average for Final Five PJM RPAM Regions

C.1.2 Load Segments

We consider 96 load segments consisting of representative hours that allow us to capture

inter-temporal variability in demand across and within seasons and the correlation of demand
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with natural gas prices across days of the year. Load segments are de�ned using a three step-

process.

In the �rst step, we divide the 8,784 hours in 2016 into four seasons: Winter (December 20 to

March 21), Spring (March 22 to June 20), Summer (June 21 to September 20) and Fall (September

21 to December 21).

In the second step, we divide each season into six bins based on the variation in load over

each season. To this end, we �rst calculate hourly metered load for all of PJM. �is is the sum

of hourly metered load from the original load regions located within PJM, where load data for

the original zones comes from the Hourly Load: Metered for 2016 dataset (last accessed 05/15/2017

online using PJM Data Miner 2 at: h�ps://dataminer2.pjm.com/feed/hrl load metered). We then

sort total PJM hourly metered load from lowest to highest across the all hours within each season

to construct seasonal Load Duration Curves. For each season, we de�ne all hours that are within

the top 1% of total PJM hourly metered load as the �rst bin. �e second bin for each season is

de�ned as all hours between the 2nd and 5th percentiles of total PJM hourly metered load. �e

third bin for each season is de�ned as all hours between the 6th and 15th percentiles of total PJM

hourly metered load. �e fourth bin for each season is de�ned as all hours between the 16th and

45th percentiles of total PJM hourly metered load. �e ��h bin for each season is de�ned as all

hours between the 46th and 75th percentiles of total PJM hourly metered load. Finally, the sixth

bin for each season is de�ned as all hours between the 76th and 100th percentiles of total PJM

hourly metered load. �is partition of within seasonal variation in load is the same as IPM (2013),

except here we consider four seasons and not two, and we go one step further.

Finally, in the third step we divide each of these 24 bins into four �nal segments. To this end,

we sort the PJM average hourly natural gas spot price from lowest to highest within each of the

24 prior bins. �e PJM average hourly natural gas spot price equals the PJM average daily natural

gas spot price for which an hour is matched. �e PJM average daily natural gas spot price equals

the average across all existing natural gas EGU’s within PJM of the daily natural gas spot price

that has been spatially linked to that EGU, as discussed further below. For each bin, the �rst
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segment is de�ned as those hours with the 10% of highest prices. �e second segment in each bin

is de�ned as those hours with prices between the 11th and 30th percentiles. �e third segment

in each bin is de�ned as those hours with prices between the 31st and 60th percentiles. Finally,

the fourth segment in each bin is de�ned as those hours with prices between the 61st and 100th

percentiles. �is leaves us with 96 (= 4 × 6 × 4) �nal load segments, where each load segment

maps several (possibly non-temporally contiguous) to speci�c hours of 2016. �is one-to-many

mapping between hours and load segments is used across all years (although for non-leap years,

February 29 does not occur and there are 24 fewer hours in the Winter season).

Given the �nal construction of the 96 load segments, we can de�ne the sets Hl for each l

which speci�es the hours in 2016 that map to load segment l. �e size of each of these sets

equals δl. Figure A.3 depicts the hours within each season sorted from lowest to highest load-

weighted average Locational Marginal Price in 2016, the la�er which is calculated as described

in the previous section. As expected, Summer has the highest LMPs, followed by Winter. Spring

and Fall are shoulder months and thus have lower LMPs.
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Figure A.3: Day-Ahead locational marginal prices by Season and Five PJM RPAM Regions in 2016. Panels

from top-le�: A. Winter, B. Spring, C. Summer, and D. Fall

C.1.3 Parameters

We select nil and cil using an iterative process that relies on several full model solutions and

which allows us to replicate the quantity demanded and the own-price elasticity of demand in

region i and load segment l with high precision. In the �rst iteration, we obtain a solution to the

full model assuming that demand is perfectly inelastic at the observed 2016 aggregate demand

levels, Lil, for the regions and load segments de�ned above. �is returns our �rst predicted value

of the Locational Marginal Price (LMP) in region i and load segment l, LMPil, conditional on the
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assumption of perfectly inelastic demand. Using this we then select nil and cil as follows:

nil =

(
1 +

1

ηDil

)
LMPil, and

cil =

(
1

ηDil

)(
LMPil
Lil

)
, (15)

where ηDil is the own-price elasticity of electricity demand for region i and load segment l. We then

re-run the full model assuming elastic demand re�ecting the nil and cil selected above to obtain a

more accurate prediction of LMPil that is consistent with our calibrated demand elasticity. �is

new prediction is then used to select our �nal nil and cil following (15), which both replicates

our baseline aggregate demand levels and the own-price elasticity of demand with only minimal

numerical error remaining. Following Bushnell et al. (2017), we select ηDil = −0.05 for all i and l.

�is is also consistent with Ito (2014), which concludes that the own-price elasticity of electricity

demand is less than 0.10.

Following the same procedure outlined above for 2016, we also calibrate nil and cil for 2017

using the same elasticities, 2017 day-ahead hourly LMPs from the Day-Ahead Hourly LMPs for

2017 dataset (last accessed 03/21/2018 online using PJM Data Miner 2 at: h�ps://dataminer2.pjm.

com/feed/da hrl lmps), and 2017 hourly load data from the Hourly Load: Metered for 2017 dataset

(last accessed 03/21/2018 online using PJM Data Miner 2 at: h�ps://dataminer2.pjm.com/feed/

hrl load metered).

C.2 Supply of Electricity from Existing Generation

To calibrate the supply of existing generation in 2016 we use a multi-step approach. First,

as described in Section C.2.1, we aggregate k = 1, ..., 3, 095 existing electric generation units

(EGUs) in PJM into j = 1, ..., 843 representative existing EGUs based upon similarity in: location

(state and load region), fuel type, heat rate, CO
2
emissions factor, and marginal costs. Second,

as described in Section C.2.2, we calculate aggregate e�ective capacity, KE
jl . �ird, as described

in Section C.2.3, we estimate mE
jl and b

E
jl for each representative EGU based on the k (j) ∈ Kj

subset of EGUs in the full sample that are aggregated to construct each representative EGU j.

18

https://dataminer2.pjm.com/feed/da_hrl_lmps
https://dataminer2.pjm.com/feed/da_hrl_lmps
https://dataminer2.pjm.com/feed/hrl_load_metered
https://dataminer2.pjm.com/feed/hrl_load_metered


C.2.1 Characterization of the Sample of Representative Existing EGUs

To construct our sample of representative existing EGUs, we �rst meticulously identify the

entire population of active existing EGUs in PJM in 2016. To do so, we combine EGU level data

on existing EGUs from �e National Electric Energy Data System (NEEDS) dataset version 5.13

(updated in August 2015) (accessed 05/21/2017) for which a PJM identi�er is present in the dataset

and the S&P Global’s Summer Capacity dataset (accessed 05/21/2017) for the subsample of EGUs

that S&P Global reports are within PJM. �e �nal NEEDS dataset that is used here consists of

both active plants and retired plants and covers 10 NERC regions that roughly coincide with the

PJM control area as of 2016: PJM AP, PJM ATSI, PJM COMD, PJM DOM, PJM EMAC, PJM PENE,

PJM SMAC, PJM WMAC, PJM West, and S C KY. �e NEEDS dataset includes plant names, plant

types, unit IDs, ORIS plant codes (O�ce of Regulatory Information System codes, which are

the unique identi�ers assigned to power plants in NEEDS), geographical locations of the plants

at county level, fuel types, plant capacities, heat rates, and plants’ available information (online

years, retirement years). �e S&PGlobal dataset includes plant names, plant types, unit IDs, plant

capacities, fuel types, net annual CO
2
emissions, net annual generations, fuel costs and variable

operation & maintenance costs (VOM costs). We start with the NEEDS sample of existing EGUs

because it is more commonly used, be�er documented, and is not behind a paywall. However,

the NEEDS dataset is more dated and tends to miss newer EGUs and some smaller EGUs which

are present in the S&P Global dataset. In addition, the two datasets are o�en not in agreement

as to the present operating status of EGUs and the number of EGUs within a facility and the

classi�cation of physical location of EGUs within PJM in each of the two datasets is sometimes

inconsistent.

To construct our population of active existing EGUs in PJM we use a two-step process that

can be broadly outlined as follows. First, we merge existing EGUS reported as being in PJM from

the NEEDs dataset with the S&P Global dataset, using a series of sequential merges. Of these,

only those EGUs listed as active in the S&P Global dataset are kept. At the end of these merges,

there remains a subsample of EGUs from either the NEEDS or S&P Global that remain classi�ed
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as being located within PJM. Second, of this subsample, we manually check the plants which are

in counties that we think might not be in PJM and remove them if necessary. Details on each of

these two steps follow.

1. Merging the NEEDS and S&P Global EGUs

�e NEEDS dataset reports 3,071 EGUs in PJM and the S&P Global dataset 3,522 EGUs. Most

of the plant names, plant types, capacities and unit IDs in the two datasets are similar but not

quite exactly the same. �erefore, we complete a sequential series of merges: A. �nd all one-to-

one matches between the NEEDS and S&P Global datasets, B. a�er removing the matches from

A, �nd all one-to-many, many-to-one, and many-to-many EGU matches in both datasets.
7

A. One-to-One Matching NEEDS and S&P Global EGUs: To �nd one-to-one EGU matches between

NEEDS and S&PGlobal, wemerge the two datasets four times. First, wematch the EGUs that have

exactly the same plant names, plant types and unit IDs in NEEDS and S&P Global. �is merge

results in 456 one-to-one matched EGUs between the two datasets. �ese matched EGUs are

set aside and removed from the original NEEDS and S&P Global datasets, leaving the remaining

NEEDS dataset to now have 2,615 EGUs and the S&P Global dataset to now have 3,066 EGUs.

Second, for the remaining EGUs in the two datasets, we use a probabilistic merge (reclink2)

in Stata, again using plant names, plant types and unit IDs with the additional requirement that

unit IDs be matched exactly. �e probabilistic merge gives us a match score for each EGU in a

range from 0 (not a match at all) to 1 (a perfect match). A match score of 0.9 or above provides

a pre�y good one-to-one match between the two datasets. We hand check those with a match

score of less than 0.9 to �lter out the wrong matches. To do conduct the hand-checks, we consider

an EGU in NEEDS a match for an EGU in S&P Global if they have similar plant names, the exact

same unit ID, similar plant type, similar fuel type and similar capacity. For example, EGU “Homer

City” in S&P Global with plant type of Steam Turbine, unit ID of 2, fuel type of Coal and capacity

of 617.5 MW is a one-to-one match for EGU “Homer City Station” in NEEDS with plant type of

Coal Steam, unit ID of 2, fuel type of Bituminous and capacity of 614 MW. �is provides another

7
�ese non one-to-one matches occur because in some cases, the NEEDS report aggregate EGUs made up of

multiple boilers of the same plant types while the S&P Global reports each individual boilers.
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batch of 1,577 one-to-one matched EGUs. We again remove these additional one-to-one matched

EGUs from the two datasets.

�ird, for the remaining EGUs from the two datasets (1,038 EGUs from NEEDS and 1,489

EGUs from S&P Global), we again use reclink2, this time only using plant names and unit IDs as

identi�ers since the plant capacities for this subset of EGUs maybe di�erent. We notice several

instances where an EGU in S&P Global matches with more than one EGU in NEEDS or several

EGUs in S&P Global match with one EGU in NEEDS or several EGUs in S&P Global match with

several EGUs in NEEDS. For example, EGU “Covanta Plymouth (MontenayMontgomery)” in S&P

Global with fuel type of Biomass, unit ID of 1 and capacity of 28 MW is a match for two EGUs

in NEEDS combined, which are “Montenay Montgomery LP” unit ID of 1 and unit ID of 2 with

fuel type of Municipal Solid Waste (MSW), capacity of 14 MW each. But these types of matching

EGUs are not one-to-one matches and thus we rule them out for now and will only match them

in the next subsection. We also relax the requirement of exactly matched EGU IDs since the two

datasets can have di�erent EGU IDs to mean the same EGUs; for example, EGU 1 of the same

plant in the NEEDS dataset has unit ID of GEN1 (generator 1) but in the S&P Global dataset has

unit ID of BOIL1 (boiler 1). �ey, however, both mean the same EGU (EGU 1). Hand-checking and

correcting the match results from this round of merge, we have another 263 one-to-one matched

EGUs, bringing the total one-to-one matched EGUs so far to 2,296 EGUs.

Lastly, for the remaining EGUs in the two datasets (775 EGUs from NEEDS and 1,226 EGUs

from S&P Global), we use reclink2 once more, this time only using plant names. Hand-checking

and correcting the match results again, we end up with another 147 one-to-one matched EGUs,

bringing the total one-to-one matched EGUs so far to 2,443 EGUs. �e breakdown of these EGUs

and their total capacities are shown in Table A.1 and Table A.2, rows 2-6. Of these 2,443 EGUs,

2,367 EGUs are active in both datasets, 36 EGUs are only active in NEEDs, 27 EGUs are only active

in the S&P Global and 13 EGUs are inactive in both datasets. We only include those EGUs that are

active in S&P Global in the �nal dataset, which means only 2,394 (2,367+27) are included in the

�nal dataset out of the 2,443 one-to-one matched EGUs. A�er completing the one-to-one EGUs
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matching, we have 628 EGUs in the NEEDS that cannot be matched one-to-one to the EGUs in

S&P Global and 1,109 EGUs in S&P Global that cannot be matched one-to-one to EGUs in the

NEEDS.

B. Non-One-to-OneMatching NEEDS and S&PGlobal EGUs: We alsomatch several EGUs in NEEDS

to one EGU in S&P Global, or one EGU in NEEDS to several EGUs in S&P Global, or many EGUs

in NEEDS to many EGUs in S&P Global, as long as these matching EGUs have the same plant

names in both datasets. To do this, we �nd plants in NEEDS and S&P Global that have the same or

similar plant names, same or similar plant types and the same or close to the same total capacity

across all the EGUs in the plants of the same fuel types. For example, two coal EGUs in S&P

Global, Joliet 29 EGU 7 and EGU 8 with capacity of 518 MW each, combined together is a many-

to-many match for four bituminous EGUs in NEEDS, Joliet 29 EGUs 71, 72, 81, 82 with capacity

of 259 MW each. We �nd 66 S&P Global EGUs that can be matched to 118 NEEDS EGUs that

can be collapsed down to just 41 one-to-one common plants or common sub-plants of the same

fuel types between the two datasets. �e breakdown of these EGUs and their total capacities are

shown in Table A.1 and Table A.2, rows 7-11. Of these 41 common plants, 40 plants are active in

both datasets, corresponding to 113 EGUs in the NEEDS and 65 EGUs in the S&P Global, 1 plant

is active in NEEDS but inactive in the S&P Global, corresponding to 5 EGUs in the NEEDS and 1

EGU in the S&P Global. �ere is no EGUs inactive in the NEEDS but active in S&P Global and no

EGUs inactive in both datasets. We again only include those EGUs that are active in S&P Global

in the �nal dataset, which means only 65 additional EGUs are included in the �nal dataset out

of the 66 one-to-one matched EGUs. Note that we only include the EGUs from one dataset (S&P

Global) to avoid double counting. We choose the S&P Global because random EGU checks online

show the S&P Global to have more accurate capacities.

We now have 2,509 EGUs in S&PGlobal matchingwith 2,561 EGUs in NEEDS. Removing these

EGU matches from the original NEEDS and S&P Global datasets, we end up with 510 unmatched

EGUs in NEEDS (Table A.2, row 12) (of which 240 EGUs are retired) and 1,013 unmatched EGUs

in S&P Global (of which 23 EGUs are retired) (Table A.2, rows 12-14).
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2. Processing Remaining Unmatched NEEDS and S&P Global EGUs

A�er the series of matches is concluded, there remain 270 active EGUs in NEEDS that cannot

be matched to the S&P Global. Since the NEEDS is slightly outdated compared to the S&P Global,

it is possible some of the 270 EGUs have already retired. We conduct individual web searches

for each of these EGUs to remove those EGUs that are no longer available as of 2016. Of these

270 EGUs, we �nd 34 EGUs are actually retired, closed, withdrawn, demolished, decommissioned,

shu�ered, forced to stop due to regulatory violations, or not yet operating in 2016, leaving us with

only 236 active unmatched EGUs in NEEDS. Of these 236 EGUs, 53 are believed to be aggregated

EGUs over small capacity EGUs of the same fuel types, regions, and states.

We believe these 53 EGUs are disaggregated in the S&P Global dataset and thus they are not

included in the �nal dataset to avoid double-counting. Of the 183 remaining EGUs, 62 are believed

to not be actually in PJM since the 10 PJM NERC regions do not exactly match the PJM control

area, 2 EGUs had capacity of 0 and did not generate during 2016, 14 are small solar PV EGUs, 24

(most of them are combustion turbine EGUs) are small generators suspected to provide power

to local facilities and non-dispatchable by PJM, 21 are small EGUs of less than 3 MW that we

cannot �nd information about operating status or capacities. We exclude these EGUs mentioned

above (34+53+62+2+14+24+21=210) from the �nal dataset. �erefore, only 60 EGUs from the 270

unmatched EGUs in the NEEDS are included in the �nal dataset (Table A.1, row 13). �ese are

the EGUs that are still operating and in PJM control area but are not in the S&P Global.

For the remaining unmatched EGUs in S&P Global (1,013 EGUs), we �lter out the 23 EGUs

that are inactive and hand-check the remaining 990 EGUs to make sure they are indeed in PJM

control area. A�er manually checking these EGUs, we only keep 576 EGUs that we believe to

belong in PJM and integrate these EGUs into our �nal dataset (Table A.2, row 13).

Table A.1 summarizes the construction of the �nal population of active existing EGUs in PJM

in 2016 starting with the NEEDS sample whereas Table A.2 reports the same starting with the

S&P Global sample. A�er combining the NEEDs and the S&P Global datasets, we have 3,509

EGUs in the �nal population of active existing EGUs in PJM. Table A.3 breaks down the number
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and capacity of these EGUs by dataset and fuel type. �e combined capacity of this population

of EGUs is 181,573 MW, of which 168,457 MW are in both NEEDS and S&P Global, 2,320 MW

are in NEEDS only and 10,796 MW are in S&P Global only. �e biggest fuel sources are gas, coal

and nuclear, with natural gas EGUs make up 38% of total capacity in PJM, followed by coal EGUs

with 32% and nuclear EGUs with 17%. Renewables EGUs and oil EGUs are only 9% and 4% of total

PJM capacity, respectively. Biomass, land�ll gas, and other fuel types are negligible, making up

of only 1% of total capacity in PJM.

Table A.1: Population Construction Starting with the NEEDS Dataset v5.13

Number Nameplate Capacity Included in

of EGUs of EGUs (MW) Final Dataset?

Total Number of EGUs in NEEDS v5.13 Dataset 3,071 219,511 —

One to One Matched with S&P Global EGUs 2,443 178,307 —

Active EGUs In NEEDS and S&P Global 2,367 173,503 Y

Active in NEEDS and Inactive in S&P Global 36 2,092 N

Inactive in NEEDS and Active in S&P Global 27 2,451 Y

Inactive in both NEEDS and S&P Global 13 261 N

Collapsed to Merge with S&P Global EGUs 118 5,308 —

Active EGUs In NEEDS and S&P Global 113 5,212 Y

Active in NEEDS and Inactive in S&P Global 5 96 N

Inactive in NEEDS and Active in S&P Global 0 0 Y

Inactive in both NEEDS and S&P Global 0 0 N

Unmatched with S&P Global 510 35,896 —

EGUs in PJM and Still Active, but Not in S&P Global 60 2,470 Y

EGUs Not Included in Final Dataset 450 33,426 N

Unmatched Aggregate EGUs 53 1,650 N

Not in PJM 109 11,908 N

In PJM 288 19,868 N

Listed As Inactive by NEEDS 202 16,865 N

Identi�ed As Inactive Via Web Search 25 2,893 N

Otherwise Removed Via Web Search 61 109 N
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Table A.2: Population Construction Starting with the S&P Global Dataset

Number Nameplate Capacity Included in

of EGUs of EGUs (MW) Final Dataset?

Total Number of EGUs in S&P Global Dataset 3,522 193,500 —

One to One Matched with NEEDS EGUs 2,443 176,635 —

Active EGUs In NEEDS and S&P Global 2,367 161,420 Y

Active in NEEDS and Inactive in S&P Global 36 11,643 N

Inactive in NEEDS and Active in S&P Global 27 2,266 Y

Inactive in both NEEDS and S&P Global 13 1,306 N

Collapsed to Merge with NEEDS EGUs 66 5,138 —

Active EGUs In NEEDS and S&P Global 65 4,771 Y

Active in NEEDS and Inactive in S&P Global 1 367 N

Inactive in NEEDS and Active in S&P Global 0 0 Y

Inactive in both NEEDS and S&P Global 0 0 N

Unmatched with NEEDS 1,013 11,727 —

Not in PJM 414 850 N

In PJM 599 10,877 —

EGUs Included in Final Dataset 576 10,646 Y

EGUs in S&P Global, Marked as Inactive 23 231 N

Table A.3: Final Population of Active Existing Electric Generation EGUs

Number of EGUs Nameplate Capacity of EGUs

Total Number of EGUs in Final Dataset 3,095 181,573

Included in both NEEDS and S&P Global 2,459 168,457

Included in NEEDS and Not Included in S&P Global 60 2,470

Not Included in NEEDS and Included in S&P Global 576 10,646

Natural Gas 836 68,688

Combustion Turbines 597 35,468

Combined Cycle 231 33,190

Other 8 30

Coal 181 57,359

Oil 548 7,023

Nuclear 32 31,244

Biomass & Land�ll Gas 765 1,547

Renewables 723 15,479

Solar 340 1,544

Wind 78 5,317

Hydro 305 8,616

Other Fuel 10 233

3. Constructing the Sample of Representative Existing EGUs

To construct the sample of 843 representative existing EGUs from the population of 3,095

active existing EGUs in PJM in 2016 we assign the 3,095 EGUs into bins based upon similar

a�ributes. �ese a�ributes include annual average marginal costs, fuel type, technology type,
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25 MW-capacity cut-o�, emissions factor, heat rate and location by state s and load region i, the

data for which comes from several sources as described below. First, we divide up the population

of 3,095 active existing EGUs in PJM in 2016 into bins based on state, fuel type, technology type,

and the �nal �ve PJM RPAM load regions. Second, we divide each of these sub-samples into as

many as seven equal groups based upon variation in emissions rates within each sub-sample.
8

�ird, we divide each of these new sub-samples into as many as seven equal groups based upon

variation in the annual average hourly marginal costs in 2016 weighted by the number of hours

in each load segment (δl) within each new sub-sample. �is process yields 843 �nal groups which

are used to characterize our sample of representative existing EGUs. �is process generates a

unique mapping between each representative EGU j to a subset of the population of 3,095 active

existing EGUs in PJM in 2016, k (j) ∈ Kj , where Kj is the subset of k EGUs assigned to bin j.

C.2.2 E�ective Capacity of Representative Existing EGUs

�e e�ective capacity KE
jl of each representative existing EGU j is given by:

KE
jl =

∑
k∈Kj

KE
k γ

E
kl, (16)

whereKE
k is the nameplate capacity for original existing EGU k and γEkl is the �nal capacity factor

a�er adjustments for EGU k in load segment l. For the subset of original existing EGUs that are

in both the NEEDS and S&P Global datasets, we use the reported nameplate capacity for KE
k

reported in S&P Global whereas for those EGUs that are in NEEDS but not in S&P Global, we

use the reported nameplate capacity from NEEDS; we give preference to the nameplate capacity

from S&P Global as the S&P Global dataset has been more recently updated.

�e �nal capacity factor a�er adjustments for EGU k for any hour in load segment l is

calculated as: γEkl = γ̃Eklνfuel(k), where γ̃Ekl is the percent of reported nameplate capacity

for original existing EGU k in an hour in load segment l that is lost and νfuel(k) is a scalar

corresponding to original existing EGU k’s fuel type fuel (k).

8
Note, that if there is no variation between subsets of groups, they are collapsed into fewer than seven groups in

each of these steps.
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�e percent of lost reported nameplate capacity is calculated as: γ̃Ekl = paklcf
E,M
fuel(k). �is

expression captures capacity that is lost due to plant outages and maintenance through pakl as

well as capacity that is withheld from dispatch for unobserved technical reasons (e.g., thermal

constraints) and/or that is underutilized due to unavailability of renewable resources through

cfE,Mfuel(k). pakl is availability by original existing EGU k for an hour in load segment l a�er

accounting for plant outages and maintenance. For original existing EGUs whose fuel type is

nuclear, pakl = arkl, where arkl is the average nuclear availability rate for nuclear original

existing EGU k for an hour in load segment l. �is is derived from the daily availability rates for

each nuclear original existing EGU k from the Energy Information Administration (EIA)’s Status

of US. Nuclear Outages, 2016 dataset (see, Daily U.S. Nuclear Outage for 2016, accessed 05/21/2017

at: h�ps://www.eia.gov/nuclear/outages/#/?day=1/1/2016) given the hours mapped to each day

in 2016. For original existing EGUs whose fuel type fuel is not nuclear: pakl = (1 − orfuel(k)l),

where orfuel(k)l is the average outage rate in 2016 for EGUs of fuel type fuel in an hour in

load segment l. orfuel(k)l is derived from outage rates by fuel type and month in 2016 from the

Generating Availability Data System for 2016 (accessed on 05/17/2017 at h�ps://www.nerc.com/

pa/RAPA/gads/Pages/GeneratingAvailabilityDataSystem-(GADS).aspx) given the hours mapped

to each month in 2016. pakl is kept constant for 2017. cf
E,M
fuel is the capacity factor by fuel type

fuel in PJM in 2016 provided in the Market Monitoring Analytics’ 2016 State of the Market Report

(see, Table 5-26 PJM capacity factor (By unit type (GWh): January through December, 2015 and

2016, Section 5 - Capacity Market, page 250). It captures the percentage of nameplate capacity

for EGUs of a particular fuel type fuel that is withheld from dispatch for unobserved technical

reasons and/or that is underutilized due to unavailability of renewable resources averaged across

2016. We use update values of these capacity factors for 2017 from Market Monitoring Analytics’

2017 State of the Market Report (see, Table 5-31 PJM capacity factor (By unit type (GWh)): 2016 and

2017, Section 5 - Capacity Market, page 277).

Since we observe a small deviation in capacity by fuel type reported by the PJM

market monitor (Market Monitoring Analytics), and the capacity inferred from our bo�om-up
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calibration, we introduce νfuel to ensure that total capacity by fuel type fuel matches published

data on total PJM capacity by fuel type in 2016. It is given by: νfuel =
KE,M

fuel∑
k(fuel)K

E
k
, where KE,M

fuel

is total nameplate capacity by fuel type fuel in PJM in 2016 from Market Monitoring Analytics’

2016 State of the Market Report (see, PJM Installed Capacity by Fuel Type, Section 5 - Capacity

Market on page 214) and k (fuel) denotes the subset of original existing EGUs of fuel type fuel.

C.2.3 Marginal Costs of Existing Generation

For each j and l,mE
jl and b

E
jl are the point estimates from running 80,928 (= 843×96)marginal

variable cost OLS regressions:

MCE
k(j)l = mE

jlK̃
E
k(j)l + bEjl + εEk(j)l, (17)

where MCE
k(j)l is the marginal variable costs of producing electricity from existing EGU k (j)

during load segment l, K̃E
k(j)l is the cumulative e�ective capacity of original existing EGU k (j) for

representative existing EGU j upon sortingMCE
k(j)l from lowest to highest across all k (j) ∈ Kj

for a given hour in load segment l, and εEk(j)l is the error term.

Intuitively, the objective of each of these regression is to identify the line of best �t between

marginal variable costs and cumulative capacity for each representative existing EGU j. For

many representative existing EGUs, mE
jl is close to zero in which case the EGU has constant

mean marginal variable costs bEjl across the e�ective capacity for that EGU, KE
jl . In other cases,

when mE
jl is positive, marginal variable costs for that representative EGU re�ects an upward

sloping curve whose generation may be constrained byKE
jl . Figure A.4 illustrates the �nal result

of these 80,928 regressions. Each panel reports the annual average total supply curve across all

EGUs within each of the �ve load regions in PJM in RPAM, where the y-axis reports the annual

average hourly marginal costs weighted by the number of hours in each load segment. �ese

curves re�ect the merit order in which EGUs are likely to be dispatched within each load region,

in which the capacity of EGUs are sorted from lowest to highest annual average hourly marginal

costs. �ese curves clearly show that our rich regression approach from (17), coupled with our

construction of representative EGUs as described in the previous section, does an exceptional
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job of characterizing marginal costs across the original population of existing EGUs. �e R2
for

each region reports the amount of variation from our calibrated regional average total supply

curves that are explained by regional average total supply curves constructed using the marginal

costs and e�ective capacity from the original population of existing EGUs; these are: West

Pennsylvania, R2 = 0.998 (top row, le�); East Pennsylvania, R2 = 0.979 (top row, right); East

Rest of PJM, R2 = 0.858 (second row, le�); Central Rest of PJM, R2 = 0.982 (second row, right);

and West Rest of PJM, R2 = 0.944 (bo�om row).
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Figure A.4: Comparison of Actual and Representative Annual Average Hourly Marginal Costs Weighted

by the Number of Hours in each Load Segment for each Load Region in 2016
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Cumulative e�ective capacity is calculated as:

K̃E
k(j)l =

x(k(j))∑
x=1

KE
x γ

E
xl, (18)

where KE
x and γExl are de�ned as above. Here, x(k (j)) re�ects a re-mapping of k to rank x of

original existing EGU k within each bin j a�er sortingMCE
k(j)l from lowest to highest.

�e marginal variable costs of producing electricity from existing EGU k (j) during load

segment l is calculated according to:

MCE
k(j)l = fcEk(j)l + rcEk(j) + omcEk(j), (19)

where fcEk(j)l is the marginal fuel costs of existing EGU k (j) for an hour in load segment l, rcEk(j)l

is the marginal pre-existing regulatory costs (excluding the marginal costs from RPS and RGGI

compliance, which are endogenous in the model) for existing EGU k (j), and omcEk(j) is marginal

operation and maintenance costs for existing EGU k (j), all measured in $/MWh. For EGUs

in the original population, marginal variable operation and maintenance costs are taken from

the S&P Global dataset. For EGUs not in S&P Global, we assume that marginal operation and

maintenance costs equal the average of marginal operation and maintenance costs of EGUs with

the same fuel type and in the same state that are reported in S&P Global. We next describe how

marginal fuel and regulatory costs are calculated.

Marginal Fuel Costs

Marginal fuel costs are given by: fcEk(j)l = ψEk(j)p
E
k(j)l, where ψ

E
k(j) is the heat rate of existing

EGU k (j) measured inmmBTU/MWh (converted from BTU/kWh) and pEk(j)l is the delivered

price of fuel to existing EGU k (j) for any hour in load segment l measured in $/mmBTU in

light of the fuel type fuel(k) corresponding to that EGU.

�e heat rates for our population of original existing EGUs, ψEk(j), use the best available

estimates across �ve datasets (from most to least accurate): Continuous Emission Monitoring

System dataset (CEMS) published by the Environmental Protection Agency (EPA) (accessed
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06/28/2017), EPA’s Emissions & Generation Resource Integrated Database (eGrid) (accessed

06/15/2017), S&P Global, EIA’s Form EIA-923 Schedules 3A & 5A, and NEEDS. A detailed summary

of heat rates across our original population of EGUs is provided in Table A.4.

Table A.4: Heat Rate Assignments to EGUs in Final Dataset

Dataset Number of EGUs Assigned Heat Rate to

Final Dataset 3,095

CEMS 374

eGrid 1,490

S&P Global 801

EIA 923 411

NEEDS 19

CEMS reports measured real-time heat rates which we believe are superior to engineering

derived estimates. �us, for the 374 EGUs in our original population that are also in CEMS, we

�rst assign CEMS heat rates for those 374 EGUs. Second, we assign heat rates to 1,490 EGUs in

our original population using the heat rates reported in eGrid that we have reason to believe are

credible. We do not assign heat rates to all remaining 2,721 EGUs (3,095-374), since we observe a

fair amount of measurement error in the heat rates and generation data that eGrid reports.
9
�ird,

we assign heat rates to an additional 801 EGUs using the heat rates reported in S&P Global. We

do not assign heat rates to all remaining 1,231 EGUs (2,721-1,490), since we again observe a fair

amount of measurement error in the heat rates that S&P Global reports.
10

Fourth, we assign

heat rates to an additional 411 EGUs using the average heat rates between 2012-2016 reported

in Form EIA-923. �ese 411 EGUs represent the subset of remaining EGUs a�er the last step for

which Form EIA-923 reports annual heat rates between 2012-2016. Finally, the 19 remaining EGUs

(430-411) are assigned heat rates from the NEEDS.

9
We exclude from this step EGUs with eGrid heat rates that are above 42,545.31 BTU/kWh (the mean eGrid

heat rate plus 1.96 times the standard deviation of eGrid heat rates) as well as EGUs marked “Data from EIA-923

Generator File overwri�en with distributed data from EIA-923 Generation and Fuel.” We do this to avoid assigning

unrealistically high heat rates to EGUs in our �nal dataset and to avoid assigning heat rates from EGUs in eGrid that

report negative annual generation, which coincide with the EGUs that are marked “Data from EIA-923 Generator

File overwri�en with distributed data from EIA-923 Generation and Fuel.”

10
We exclude from this step EGUs with S&P Global heat rates that are above 26,473.842 BTU/kWh (the mean S&P

Global heat rate plus 1.96 times the standard deviation of S&P Global heat rates). S&P Global performs their own

heat rate calculation using Form EIA-923. For some EGUs that generate a very small amount of electricity in a year,

their estimates of heat rates for these EGUs are so unrealistically high that they cap them at 100,000 BTU/kWh. We

believe these estimates are not reasonable and want to exclude these EGUs from our heat rate calculation.
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�e delivered price of fuel to existing EGU k (j) for any hour in load segment l depends on

the fuel type corresponding to each existing EGU, fuel(k), as well as the physical location of

each existing EGU.

For natural gas �red existing EGUs, the delivered price of fuel equals the natural gas spot

price assigned to existing EGU k plus transportation costs. In our analysis natural gas spot prices

are allowed to vary across load segments to capture the strong observed correlation between load

and exogenous drivers of natural gas price variability. Lacking data at the EGU-level on contract

arrangements for securing natural gas deliveries, we assign existing natural gas �red EGUs to

one of seven gas spot pricing hubs: Alliance, Dominion North Point, Chicago City Gate, Lebanon

OH, TETCO Zone M3, Tennessee Gas Zone 4 - Marcellus and Transco Leidy. We assign each

EGU to the nearest hub using the Euclidean distance (as the crow �ies) between the latitude and

longitude of the existing EGU and centroids for each of the seven spot pricing hubs. For a few

natural gas �red existing EGUs for which we do not have latitude and longitude, we assign those

EGUs the average daily natural gas spot prices of all the natural gas �red EGUs in the states

that they are located in. Spot prices for each of these hubs come for 2016 come from Bloomberg’s

Daily Natural Gas Spot Price dataset. Given the hours in each day and their assignment to the load

segments across the year, the load segment average spot price assigned to each natural gas �red

existing EGU provides the natural gas spot price assigned to existing EGU k for load segment l.

Transportation costs are constant across load segments but are allowed to vary across the census

regions in which natural gas �red existing EGUs are geographically located. Transportation costs

equal the di�erence between the 2016 average natural gas delivered price to the electric power

sector for each census region in PJM, taken directly from the EIA’s Annual Energy Outlook 2017

(AEO) (Table: Energy Prices by Sector and Source, Case: Reference case, AEO 2017 ), and the annual

EGU-weighted average natural gas spot price derived from the Bloomberg data. To calculate the

la�er we �rst create annual averages of the daily natural gas prices for each gas hub. �en, given

the spatial assignment of these annual averages to each natural gas �red existing EGU, we take

the average across all natural gas �red existing EGUs located within a given census region.
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For coal �red existing EGUs, the delivered price of fuel assigned to EGU k equals the coal

spot price plus transportation costs. Similar to natural gas, coal spot prices vary across load

segments, however, in this case, we exploit variation in spot prices across weeks and not days.

Transportation costs are a larger share of marginal fuel costs for coal �red existing EGUs than

for natural gas �red existing EGUs, so we anticipate more opportunities for input price arbitrage

across coal basins than across natural gas hubs. In addition, we lack data at the EGU-level on

contract arrangements for securing coal deliveries and restrictions at the EGU level as to the

types of coal that the EGU can utilize.
11
For these reasons, the fuel cost we assign to each EGU k

in a given hour in load segment l is the lowest delivered price of coal to EGU k in a given hour

in load segment l from one of �ve coal basins: Central Appalachia Basin, Northern Appalachia

Basin, Illinois Basin, Powder River Basin, and the Unita Basin. To determine this, we �rst calculate

the delivered price of coal to EGU k in week w for each of the �ve coal basins. �is equals the

week w coal spot price in each coal basin plus annual average transportation costs from each

basin to the state s(k) in which coal �red existing EGU k is based in. Weekly coal spot prices

from each of the �ve coal basins are taken directly from the EIA’s Coal Markets Archive (see,

h�ps://www.eia.gov/coal/markets/includes/archive2.php). Average annual transportation costs

from each coal basin to each state equal the average annual transportation costs across three

modes of transportation: truck, waterway, and railroad, respectively taken from the EIA’s Coal

Transportation Rates to the Electric Power Sector, Table 3a. Average annual coal transportation costs

from coal basin to state by truck, Table 3b. Average annual coal transportation costs from coal basin

to state by waterway, and Table 3c. Average annual coal transportation costs from coal basin to state

by railroad. Finally, the delivered price of coal to EGU k for each of the �ve coal basins in week

w is converted to a price that varies across load segments l(w) given the mapping between hours

and weeks.

Delivered oil and uranium prices for existing EGUs k that use these fuel types are assumed to

only vary by the census region in which that existing EGU is located and are constant across load

11
We requested access to this con�dential information from the EIA, but they denied our request.
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segments within each year. �e prices we use are the annual delivered distillate oil prices and

uranium prices for electric power sector by census region for 2016 from the EIA’s Annual Energy

Outlook 2017, Table: Energy Prices by Sector and Source, Case: Reference case. We do not consider

within-year variability in distillate oil prices since most of the oil �red existing EGUs we observe

are infrequently dispatched only during peak demand periods, and we assume these EGUs have

access to local storage su�cient to fully price arbitrage across a year. Nuclear prices simply do

not exhibit large variation in prices within a year, given the energy density of uranium fuel and

its capacity to be stored on site at low cost. Other delivered fuel prices (biomass and other fuels)

are taken from S&P Global’s Summer Capacity dataset for each remaining existing EGU k and

which are also constant across load segments within each year.

Marginal Pre-existing Regulatory Costs

Marginal pre-existing regulatory costs (excluding the marginal costs from RPS and RGGI

compliance, which are endogenous in the model) for existing EGU k are given by: rcEk(j) =

pSO2φE,SO2

k(j) + pNOxφE,NOxk(j) , where pSO2
and pNOx are, respectively, the annual SO

2
and NOx

allowance prices measured in $/lb and φE,SO2

k(j) and φE,NOxk(j) are, respectively, the emissions

intensity of SO2 and NOx for existing EGU k (j) measured in lbs/MWh as discussed further

below.
12 pSO2

is the sum of the annual SO
2
allowance prices for the Acid Rain Program and the

Cross-State Air Pollution Rule (CSAPR) in 2016. pNOx is the annual NOx CSAPR allowance price

in 2016. �ese three prices are taken directly from S& P Global’s NOx/SO2 Allowances.

C.3 New Capacity and Supply of Electricity from New Generation

We assume that utilization factors for new EGU j, γNj , vary only by technology types and not

across states. �ese utilization factors by technology type are taken directly from Monitoring

Analytics’ 2016 State of the Market Report, Table 5-26 PJM capacity factor (By unit type (GWh)):

January through December, 2015 and 2016, on page 250 and are 0.961, 0.295, and 0.177 for NGCC,

12
In addition, starting in 2019, Illinois and New Jersey implement nuclear subsidies. �ese subsidies are included

in marginal pre-existing regulatory costs in future years, although here we seek to characterize marginal pre-existing

regulatory costs in the years of calibration, 2016 and 2017; see Section D for a complete description of how marginal

pre-existing regulatory costs vary in future years and Section F for additional details on these subsidies.
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wind, and solar, respectively. Likewise, we also assume that CN
j only varies by technology

type. While estimates of certain components of the annual cost of adding new capacity costs are

pervasive (e.g., the purchase costs of capital, the costs from purchasing or leasing land, �nancing

costs, and some costs associatedwith new capacity permi�ing and approval) they tend to be based

largely on engineering estimates rather than revealed preferences. Moreover, data on other cost

components are unobserved (e.g., search costs, costs of new technology adoption and innovation,

costs costs arising from regulatory uncertainty). As such, we numerically calibrate CN
tech for each

technology type tech as described below.

�e marginal variable costs for new EGU j for an hour in load segment l, bNjl , is calculated as:

bNjl = fcNjl + rcNj + omcNj , (20)

where fcNjl is the marginal fuel costs of new EGU j for an hour in load segment l, rcNj is

the marginal pre-existing regulatory costs (excluding the marginal costs from RPS and RGGI

compliance, which are endogenous in the model) for new EGU j, and omcNj is marginal operation

and maintenance costs for new EGU j, all measured in $/MWh.

For new wind and solar EGUs, fcNjl = 0. For new NGCC EGUs, fcNjl = ψNj p
N
jl , where ψ

N
j is

the heat rate of new NGCC EGU j measured in mmBTU/MWh (converted from BTU/kWh)

and pNjl is the delivered price of natural gas to new EGU j) for any hour in load segment l

measured in $/mmBTU . ψNj is set to equal the average heat rate of all existing NGCC EGUs

in PJM. pNjl = 1
Js

∑
j∈s p

NGCC
jl , where Js is the number representative EGUs in state s and

pNGCCjl = 1
JNGCC
j

∑
k∈KNGCC

j
pEkl, given that KNGCCj is the set of NGCC existing EGUs in the

original population that correspond to NGCC representative existing EGU j of size JNGCCj and

pEkl is the delivered price of fuel (here restricted to just natural gas �red existing EGUs) for existing

EGU k in load segment l, as de�ned in the previous section. Marginal pre-existing regulatory

costs (excluding the marginal costs from RPS and RGGI compliance, which are endogenous in

the model) for new EGU j are given by: rcNj = pSO2φN,SO2

j + pNOxφN,NOxj , where pSO2
and

pNOx are, respectively, the annual SO
2
and NOx allowance prices as discussed in the previous
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section and φN,SO2

j and φN,NOxk(j) are, respectively, the emissions intensity of SO2 and NOx for

new EGU j measured in lbs/MWh as discussed further below. omcNj = 1
Jtech
s

∑
j∈s omc

E,tech
j ,

where J techs is the number representative EGUs in state s of technology type tech and omcE,techj =

1
Jtech
j

∑
k∈Ktech

j
omcEk , given that Ktechj is the set of existing EGUs in the original population of

technology type tech that correspond to representative existing EGU j of technology type tech

of size J techj and omcEk is the marginal operation and maintenance costs for existing EGU k, as

de�ned in the previous section.

C.4 External Renewable Energy Certi�cates

For those state-tier RPSs that allow it, we allow for the importation of external RECs from

outside of PJM to assist those states with complying with their RPS targets. �e sets ST q

and Qst are constructed based on the state in which external REC supplier q is located and

importation constraints speci�ed in individual state’s RPS standards. �e annual amount of RECs

that external REC supplier q can supply to all states including states that are outside of PJM),

r̄q, are taken directly from three sources: PJM Environmental Information Services’ Generation

A�ribute Tracking System (PJM-GATS), the North Carolina Renewable Energy Tracking System

(NC-RETS), and the Michigan Renewable Energy Certi�cates System (MIRECS). PJM-GATS only

tracks RECs that can be used to comply with the RPSs of nine states within PJM: District of

Columbia, Delaware, Illinois, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, and West

Virginia and therefore we supplement using data on RECs tracked by the state tracking systems

for North Carolina and Michigan, NC-RETS and MIRECS. In 2016 there are 243 EGUs outside of

PJM that can supply RECs for compliance with state RPSs within PJM and in 2017, 262.

Whilewe have data on the amount of total external REC supply available, r̄q, data on the actual

amount of external RECs supplied does not exist, rq. As many of these external REC suppliers

can likely supply to many other states outside of PJM that also have RPSs, we cannot assume that

all of r̄q is supplied to PJM states exclusively. For this reason we have introduced the parameter

γq in (7). In order to calibrate this vector of parameters, we divide the entire set of external REC

suppliers into two types based upon importation constraints speci�ed in individual state’s RPS
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standards: those that supply exclusively to Pennsylvania, QPA,t, and those that supply to states

in PJM other than Pennsylvania exclusively,Q¬PA,t. For external REC suppliers in the �rst set we

assume that γq = γPA and for those in the second set we assume that γq = γ¬PA. As discussed

further below, we numerically calibrate these two scalars twice for 2016 and 2017, leaving us with

four scalars: γ2016
PA , γ2016

¬PA, γ
2017
PA , and γ2017

¬PA.

C.5 Transmission Network

Transmission line data is taken from S&P Global’s Operating Transmission Projects Map for

2016. Upon visual inspection, transmission lines that connect any two zones within two PJM

RPAM regions are aggregated into a single aggregated transmission lines with voltage Vih equal

to the sum of the maximum voltage across all lines connecting the two PJM RPAM regions, as

shown in Figure A.1. To be precise, a line is presumed to connect two regions if it connects at

least two ISO market hubs with at least one ISO market hub in each region.
13

We identify �ve

aggregate transmission lines that connect our �ve PJM RPAM regions. �e table below depicts all

possible combinations of aggregate links between our �ve PJMRPAM regions and their respective

aggregate voltage in KV. Vih equals the number provided divided by 1,000 (in MV).

Table A.5: PJM Transmission Networks

Transmission Line Between Total KV

PA East and PA West 960

PA East and RPJM East 1,880

PA East and Central RPJM 690

PA East and RPJM West N/A

PA West and RPJM East N/A

PA West and Central RPJM N/A

PA West and RPJM West 5,208

RPJM East and Central RPJM N/A

RPJM East and RPJM West N/A

Central RPJM and RPJM West 3,460

While its possible to construct an estimate of the aggregate voltage of the �ve lines considered

in our analysis based upon the data on the actual voltage of individual lines to which each

aggregate line corresponds, data on the actual e�ective amperage of lines does not exist for

13
According to S&P Global, an ISO market hubs is “trading location at which se�lement data is available and

veri�able.” In PJM, this re�ects a point where locational marginal prices are speci�ed for the wholesale market.
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which to perform a similar aggregation nor, given the physical properties of transmission, is

it clear that aggregate e�ective amperage can be aggregated in a similar fashion as voltage.

Moreover, what we characterize as the e�ective amperage of a particular line in a given hour

in our simpli�ed representation of the physical power system (e.g., we abstract from conductor

emissivity, conductor absorptivity, resistance, and other factorswhichwould be need to formulate

a complete engineering description of a transmission line) is likely to varywith temperature, solar

�ux, wind speed, and wind direction in that hour. Across an aggregate transmission line, e�ective

amperage may also vary across hours depending upon how the ensemble of actual transmissions

lines that correspond to that aggregate line are interconnected and physically interact with the

aggregate �ow of power that moves through them re�ecting, possibly, localized congestion and

losses which are likely highly correlated with load. �us, while many numerical power system

modelers make assumptions about the amperage of the aggregate lines that they model (and

which are typically assumed to be constant over time), we not feel comfortable making similar

assumptions. �ese assumptions have critical implications for the predictions generated by these

models which may make it di�cult for these models to accurately predict the inter-regional �ow

of power (and therefore, the within region �ow of power), regional locational marginal prices,

and the resulting implications for the welfare of economic agents throughout the power system.

For these reasons we do not adopt a similar approach, but instead introduce novel numerical

calibration methods o�en used in other modelling domains to numerically calibrate Aihl for all

ih = 1, ..., 5 and load segments l = 1, ..., 96, as discussed further below.

C.6 Estimation of CO2 Emissions by RGGI States Not in PJM and RGGI

Allowance Bank

�e transportation model of the PJM power system included within RPAM was originally

designed to re�ect the scale in which electricity dispatch and new capacity expansion decisions

are actually made within the wholesale electricity market operated by PJM. RGGI of course

encompasses states located within two other signi�cantly sized wholesale electricity markets:

the wholesale electricity market that includes Maine, Vermont, New Hampshire, Massachuse�s,
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Connecticut, and Rhode Island which is managed by the New England Independent System

Operator (ISONE), and the wholesale electricity market encompassing New York operated by

the New York Independent System Operator (NYISO). We ultimately chose not to expand the

transportationmodel of the PJM power system to individually account for the economic decisions

made in these two additional wholesale markets. In addition, to not being feasible due to time

constraints, such an expansion would require us to make strong assumptions regarding how

power �ows economically between these two regional wholesale electricity markets and PJM.

Since our focus is on understanding Pennsylvania’s entry into RGGI and Pennsylvania is

a critical member of PJM, all that is really necessary is for us to proceed is to account for CO
2

emissions from RGGI states not in PJM and changes in allowances that have been banked by RGGI

market participants historically (in PJM or otherwise). Given the rich data available to us from

RGGI, we are able to do so quite credibly re�ecting the revealed economic decisionsmade by RGGI

market participants from the beginning of RGGI’s �rst allowance market in 2009. We treat these

economic decisions in a reduced form manner, meaning we do not explicitly characterize how

changes in electricity dispatch in PJM a�ects auction prices–for which we do not have data–but

instead identify the RGGI market equilibrium using plausibly exogenous instrumental variables.

We then use these two reduced form equations to extend the transportation model of the PJM

power system to allow us to characterize market clearing in the RGGI cap and trade system in

(13).

To this end, we use three stage least squares (3SLS) to simultaneously estimate the following

system of equations using quarterly data from 2009 to 2019, where t denotes quarters:

Bt = β0 + β1Pt + β2Bt−1 + β3DNJinRGGI,t + β4Dq2,t + β5Dq3,t + β6Dq4,t + %t, (21)

Et = γ0 + γ1Pt + γ2DCP2,t + γ3DCP3,t + γ4Dq2,t + γ5Dq3,t + γ6Dq4,t + γ7Rt + γ8DCP4,t + νt,

Pt = δ0 + δ1Qt + δ2DCPA1,t + δ3DCPA2,t + δ4Dq2,t + δ5Dq3,t + δ6Dq4,t + δ7Rt + εt.

where: Bt is the amount of banked permits as of t, Bt−1 is the amount of banked permits as of
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t− 1, Pt is the market clearing price of permits at auction,DNJinRGGI,t is a dummy equal to one

if New Jersey is in RGGI in t and zero otherwise, Dq2,t is a dummy equal to one if t corresponds

to quarter two,Dq3,t is a dummy equal to one if t corresponds to quarter three,Dq4,t is a dummy

equal to one if t corresponds to quarter four, Qt is the quantity of permits o�ered at auction in t,

DCPA1,t is a dummy that equals one if the �rst control period adjustment is in e�ect, DCPA2,t is

a dummy that equals one if the second control period adjustment is in e�ect, Rt is the quarterly

average of daily bank discount rates for treasury bills with four week maturation, Et is total CO2

emissions from covered EGUs in RGGI states that are not in PJM,DCP2,t is a dummy equal to one

if t is in control period two, DCP3,t is a dummy equal to one if t is in control period three, and

DCP4,t is a dummy equal to one if t is in control period four. %t, νt, and εt are the modelled error

terms and the β’s,γ’s, and δ’s are the parameters to be estimated.

Rt is calculated from the daily bank discount rates for treasury bills with fourweekmaturation

as reported in the U.S. Department of the Treasury’s Daily Treasury Bill Rates Data.

Et is calculated from quarterly level data on CO
2
emissions from covered EGUs in RGGI from

RGGI’s CO2 Allowance Tracking System (COATS) for the subset of EGUs in RGGI states that are

not in PJM. We assume that if a EGU is “not operating” that it releases zero CO
2
emissions.

�e amount of permits added to the permit bank in a quarter are assumed to equal the number

of permits sold in the quarterly RGGI auction as reported in RGGI’s Allowance Prices and Volumes

dataset plus the amount of permits not-auctioned in the quarter less the CO
2
emissions from

covered EGUs in all RGGI states aggregated from EGU level quarterly emissions from COATS.

Bt is the cumulative sum of these additions and subtractions to the bank (restricted to be non-

negative) as of quarter t and Bt−1 is the one quarter lag of Bt.

�e amount of permits not-auctioned in the quarter equals the quantity of permits o�ered at

auction in the quarter multiplied by the share of non-auctioned permits in the associated year

to the total amount of permits o�ered in the associated year.
14

�e quantity of permits o�ered

at auction in the quarter is taken from RGGI’s Allowance Prices and Volumes dataset. �e total

14
Permits sold in 2008 before the beginning of the �rst control period in 2009 are added to the permits o�ered in

2009.
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amount of permits o�ered in a year is calculated from the quarterly amount of permits o�ered.

�e amount of non-auctioned permits by year equals the CO
2
Allowance Adjusted Budget plus

the amount of permits released by the Cost Containment Reserve (CCR) less the quantity of

permits o�ered at auction that year. �e CO
2
Allowance Adjusted Budget and the amount of

permits released by the CCR are taken from RGGI’s Distribution of 2009-2020 Allocation Year

CO
2
Allowances datasets. �e quarterly allowance price at auction, Pt is also taken from RGGI’s

Allowance Prices and Volumes dataset.

All remaining dummy variables are de�ned based upon the years associated with each of the

four control periods and the years in which the CO
2
Allowance Budget was modi�ed by the �rst

and second control period adjustments.

�e �rst equation in (21) is a reduced form representation of the �rst-order condition of

an economic agent’s inter-temporal pro�t maximization decision to bank permits. �e second

equation is a reduced form representation of a representative generator’s (here, re�ecting

generation across all non-PJM RGGI states) pro�t maximizing decision to reduce CO
2
emissions

for compliance with RGGI. Concurrently, this also re�ects the representative generator’s demand

for permits at auction. �e third equation re�ects market clearing in the RGGI primary allowance

auction, where Qt re�ects the supply of new permits o�ered at auction.

Taken together the last two equations in (21) re�ect the conventional structural estimation

of the supply and demand of permits. Given the exogenous variables in these equations, these

two equations identify the endogenous market clearing price for permits sold at auction, which,

together with additional exogenous variables, is used to estimate the decision to withdraw

(demand) or add (supply) permits in t to the bank. We use quarterly level data for which we

have a complete series from quarter 1 of 2009 to quarter 4 of 2019.

A�er somemanipulation the estimated parameters from (21), given that the original data is by

quarter and in short tons, the parameters estimated from the �rst equation imply that: cb
(
B̄
)

=

−1.102311

(
1
4(4β̂0+β̂4+β̂5+β̂6)+β̂2B̄

β̂1

)
and nB = − 1

β̂1
, where ·̂ denotes a parameter estimate. B̄ is

initialized to equal the amount of observed banked permits at the end of quarter four in 2019
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and updated each year therea�er as described above. Likewise, the parameters estimated from

the second equation imply that: cNPJM = −1.2150895

(
4(γ̂0+γ̂7R̃t+γ̂8)+γ̂4+γ̂5+γ̂6

4γ̂1

)
and nNPJM =

− 1
4γ̂1

, where R̃t is the average of the quarterly average daily bank discount rates for treasury bills

with four week maturation for quarters in the fourth control period.

C.7 Aggregate Loss

Aggregate loss in any given hour in load segment l as a percentage of demand in region i for

that hour is given by: εl = z0 + zl, where z0 = 0.034 is the annual average transmission and

distribution system losses across all of PJM, and zl is the di�erence in virtual increment o�ers

and decrement bids in an hour in load segment l as a fraction of total PJM load in load segment

l. z0 re�ects annual average transmission and distribution system across PJM of 3.4%, calculated

for 2016 as the di�erence between total PJM generation and total PJM load all normalized by

total PJM load in 2016, where total generation and load in PJM in 2016 are taken from Market

Monitoring Analytics’ 2016 State of the Market Report.

Economic participants within PJM are allowed to inter-temporally arbitrage in the day ahead

market at each load node by taking long (decs) or short (incs) positions through a virtual bidding

process on the amount of load expected at each hour and at each load node. If participants make

an o�er to sell MWh in a given hour and at a given load node, they make a virtual increment

o�er or ‘inc bid’ in the day ahead market. Conversely, if participants make an o�er to buy MWh

in a given hour and at a given load node, they make a virtual decrement o�er or ‘dec bid’ in the

day ahead market. We account for the amount of cleared daily net virtual bids (total decs - total

incs) by load segment in our model through zl, but not across load nodes as data on inc-decs

by load zone is not publicly available. Accounting for virtual bidding behavior in our model is

economically signi�cant as we �nd that zl ranges from -0.0518 to 0.0283, and thus for some load

segments, virtual bidding in PJM is of the same order ofmagnitude as losses from the transmission

and distribution system within PJM.

To assess how virtual bidding e�ects market clearing in PJM, we �rst estimate the following
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OLS regression using daily data from 2016, where t denotes days:

NV Bt = β1Lt + β2L
2
t + β3DW,t + β4DSp,t + β5DSu,t + β6DF,t (22)

+ β7DW,t × Lt + β8DSp,t × Lt + β9DSu,t × Lt + β10DF,t × Lt

+ β11DW,t × L2
t + β12DSp,t × L2

t + β13DSu,t × L2
t + β14DF,t × L2

t + εt,

where: NV Bt is the net virtual bid (total number of incs less total number of decs) in day t; Lt

is the total PJM load in day t; and DW,t, DSp,t, DSu,t, and DF,t are seasonal dummies by t. εt

is the modelled error term and the β’s are the parameters to be estimated. NV Bt is calculated

using total daily cleared incs and decs taken directly from the Daily cleared INCs, DECs, and

UTCs dataset from PJM’s Data Miner 2 (accessed May 19, 2019 at h�ps://dataminer2.pjm.com/

feed/day inc dec utc/de�nition). Seasonal dummies across days correspond to our de�nitions of

seasons stated in Section C.1. Total PJM load in day t is the sum across all load zones in PJM and

all hours in each day t of the hourly load data by load zone (from the Hourly Load: Metered for

2016 dataset, discussed above). �e R2
from this regression is 0.57. As seen in Figure A.5, which

reports the results of four locally weighted regressions (assuming a bandwidth of 0.8) for each

season, our quadratic speci�cation with interaction terms with seasonal dummies is well-justi�ed

by the data.
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Figure A.5: Daily Load and Daily Net Cleared Virtual Bids as a Percentage of Daily Load

Given the estimated coe�cients from (22), we next obtain point estimates of net virtual bids

by hour h, ˆNV Bh, using data on PJM load by hour Lh and seasonal dummies by hour: DW,h,

DSp,h, DSu,h, and DF,h. Finally, zl =
∑

h∈Hl
ˆNV Bh∑

h∈Hl
Lh

, where Hl is the set of hours within the year

2016 that are assigned to load segment l, as de�ned above. �ese values are plo�ed (in percentage

terms) against total load segment load in PJM in Figure A.6 for each of the four seasons.
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Figure A.6: Segment Load and Predicted Daily Net Cleared Virtual Bids as a Percentage of Daily Load,

zl × 100

C.8 Numerical Calibration

Numerical calibration amounts to a type of nonlinear least squares estimation (see, e.g.,

Amemiya, 1977) across the numerical simulation model speci�ed above whereby identi�cation of

a vector of numerically calibrated parameters relies on matching, as closely as possible, various

moments predicted by the numerical model against observed data using a single instantiation

of data. �e method we adopt to numerically calibrate our model is in the spirit of the one-step

non-linear least squares estimation procedure developed in Ferreyra (2007). We select parameters

for numerical calibration (γ2016
PA , γ2016

¬PA, Aihl for all ih = 1, ..., 5 and all l = 1, ..., 96 in 2016, γ2017
PA ,

γ2017
¬PA, and C

N
tech for all tech ∈ {NGCC, solar, wind} for 2017) for which the data necessary to

analytically calibrate or estimate the parameter is scarce or incomplete. Our numerical calibration

approach proceeds in three stages. �e �rst stage relies entirely on 2016 data and the analytically

calibrated and/or estimated parameters from above for 2016. �e second stage uses the same as
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well as the numerically calibrated parameters for 2016 from the �rst stage. �e third stage, uses

the same as well as 2017 data and the analytically calibrated and/or estimated parameters from

above for 2017. In the �rst stage, we search for γ2016
PA and γ2016

¬PA, assuming that transmission is

unconstrained and that new generation cannot be added
15
(and so the parameters CN

tech and Aihl

vector are not needed), so that our vector of predicted annual REC prices in Pennsylvania and Rest

of PJM in 2016 match observed 2016 REC prices. Second, we search over Aihl for all ih = 1, ..., 5

and all l = 1, ..., 96, such that our vector of predicted locational marginal prices by region and

load segment match observed 2016 LMPs by region and load segment. �ird, we search for γ2017
PA ,

γ2017
¬PA, C

N
NGCC , C

N
solar, and C

N
wind so that so that our vector of predicted annual REC prices in

Pennsylvania and Rest of PJM in 2017 match observed 2017 REC prices and so that our vector

of total new capacity by technology matches observed total new capacity by technology in 2017.

We next detail the precise methodology used to perform numerical calibration in each stage.

C.8.1 Share of External RECs Supplied in 2016

We search for Θ1 = {γ2016
PA , γ2016

¬PA} using Feasible Weighted Least Squares to account for

heteroskedasticity across predicted outputs. �e �rst stage of Feasible Weighted Least Squares

minimizes the following loss functionwhich captures the Euclidean distance between themodel’s

predicted REC prices by tier in 2016 and observed REC prices by tier in 2016 in Pennsylvania

(actual) and Rest of PJM (generation weighted):

L (Θ1) =
∑
t∈PA

(
yPA,2016
t − ŷPA,2016

t (Θ1)
)2

+
∑

t∈RPJM

(
yRPJM,2016
t − ŷRPJM,2016

t (Θ1)
)2

, (23)

where ŷPA,2016
t (Θ1) are the model predicted REC prices by tier t under Pennsylvania’s AEPS in

2016 and ŷRPJM,2016
t (Θ1) are the model predicted state-generation weighted average REC prices

by tier t across states in Rest of PJMwith RPSs in 2016, which are calculated from the unweighted

REC prices by tier and state in PJM predicted by the model, i.e., the Lagrange multipliers/shadow

prices on (12) a�er solving for the competitive equilibrium prior to Pennsylvania joining RGGI in

2016. yPA,2016
t and yRPJM,2016

t are exogenous data that are calculated using the REC prices in 2106

15
Recall, that our population of existing EGUs contains all EGUs as of 2016.
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by tier for all states with RPS’s in PJM taken from S&P Global’s Market Intelligence - California

Carbon/RGGI Allowances (accessed on 02/19/2018 at h�ps://platform.marketintelligence.spglobal.

com/web/client?auth=inherit#markets/co2AndRGGIAllowances). Data on generation used to

construct the generation-weights for RPJM in this �rst phase are calculated from �rst running

the model for 2016 without any RPS constraints. �e residuals from the Θ1 that solves this

regression are used to calculate σ̂PA,2016
and σ̂RPJM,2016

or the standard deviation in residuals

for PA and RPJM, given variation across tiers within each Pennsylvania/RPJM. We also construct

new generation weights from PJM given theΘ1 that solves this regression.

�e second stage runs nonlinear least squares on variables transformed to account for

heteroscedasticity. �at is, we search for Θ1 that minimizes the following loss function of the

transformed variables:

L̃ (Θ1) =
∑
t∈PA

(
y∗PA,2016
t − ŷ∗PA,2016

t (Θ1)
)2

(24)

+
∑

t∈RPJM

(
y∗RPJM,2016
t − ŷ∗RPJM,2016

t (Θ1)
)2

,

where
∗
denotes normalization by σ̂PA,2016

on the �rst term on the right-hand side of (24) and

normalization by σ̂RPJM,2016
on the second term on the right-hand side of (24). Since model

predictions appear to be well-behaved in the γ2016
PA and γ2016

¬PA parameter space, we solve both

stages of this regression using MATLAB’s fmincon function subject to constraints that γ2016
PA and

γ2016
¬PA must individually be on the interval [0, 1] and with starting values in the �rst regression

of one in both Pennsylvania and RPJM and starting values in the second regression equal to the

solution from the �rst regression.

�e �nal γ2016
PA and γ2016

¬PA that solve (24) are 0.615 and 0.814, respectively. �is means that

61.5% of all the available external RECs from Pennsylvania exclusive external REC suppliers are

supplied to Pennsylvania, and 81.4% of all the available external RECs from the remaining PJM

external REC suppliers are supplied to all PJM states (including, possibly, Pennsylvania).
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C.8.2 E�ective Aggregate Amperage in 2016

For each load segment l = 1, ..., 96 we search forΘl
2 = {Aihl}5

ih=1 using a similar approach as

discussed in the previous section. However, in contrast to the parameters calibrated numerically

in the previous section, our model is highly non-linear with respect to amperage. As such, we �rst

perform an exhaustive grid search that relies on 100,000 annual model predictions for the year

2016. For each model solution, we specifyAihl = Āih for all l = 1, ...96. We consider ten values of

Āih for each ih, from 200 to 2,000 amperes with increments of 200. �is provides 100,000 (= 105
)

combinations of

{
Āih
}5

ih
.
16

Given these model predictions, the �rst stage of Feasible Weighted

Least Squares minimizes the following loss functions for each l = 1, ..., 96 which captures the

Euclidean distances between the model’s predicted nodal congestion LMPs by PJM RPAM model

region i and load segment l and observed congestion LMPs by region i and load segment l (load

weighted):

Ll
(
Θl

2

)
=

5∑
i=1

(
yil − ŷil

(
Θl

2

))2
, (25)

where ŷil
(
Θl

2

)
are the model predicted congestion LMPs in region i and load segment l in 2016,

which are calculated from the LMPs in region i and load segment l predicted by themodel, i.e., the

Lagrange multipliers/shadow prices on (11) a�er solving for the competitive equilibrium prior to

Pennsylvania joining RGGI in 2016. yil are exogenous day-ahead congestion LMPs in region i and

load segment l in 2016 that are load weighted twice, �rst based on load by load zone within each

PJM RPAM load region and second by load across hours within each segment, as done similarly

in Section C.1. yil is calculated using observed day-ahead congestion LMPs by load zone and hour

16
As each annual model solution determines market clearing for each of 96 load segments and �ve load regions and

the solution for load segment l is independent of the solution for load segment l′ 6= l, given our model assumptions,

this is equivalent to solving 9.6 million (= 100, 000 × 96) market clearing solutions for all �ve load regions. One

drawback of our approach is that our annual model solution, conditional on a particular

{
Āih

}5
ih

draw imposed

across all load segments, also determines equilibrium annual RGGI allowance and REC prices which a�ects market

clearing and therefore congestion LMPs in each load segment. An alternative would be to directly specify all possible

combinations of Aihl across both ih and l; for ten values of amperage, this would entail 105×96 = 10490 model

evaluations which is computationally prohibitive. Moreover, we do not expect the predicted annual RGGI allowance

and REC prices across the 100,000

{
Āih

}5
ih

draws to vary substantially, and possibly impact the congestion LMPs

we recover. As such, we believe that our current approach is su�cient.
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from PJM’s Day-Ahead Hourly LMPs for 2016 dataset and using load by load zone and hour from

PJM’s Hourly Load: Metered for 2016 dataset. �e residuals from theΘl
2 that solves this regression

for each l = 1, ..., 96 are used to calculate σ̂l or the standard deviation in residuals across regions

for load segment l.

�e second stage runs nonlinear least squares on variables transformed to account for

heteroscedasticity. �at is, we search for Θl
2 that minimizes the following loss functions of the

transformed variables:

L̃l
(
Θl

2

)
=

5∑
i=1

(
y∗il − ŷ∗il

(
Θl

2

))2
, (26)

where
∗
denotes normalization by σ̂l.

Once candidate solutions to the second stage have been identi�ed for all l = 1, ..., 96, we

then further re�ne our solutions by minimizing L̃l
(
Θl

2

)
for all l = 1, ..., 96 using MATLAB’s

fmincon function. In each case, we specify lower bounds that are equal to 10 amperes and

upper bounds that are equal to 5,000 amperes for all links, and use the candidate solutions

from minimizing (26) as starting values. �e initial grid search, the solutions to the two stage

Feasible Weighted Least Squares regressions for all l = 1, ..., 96, and the fmincon searches for all

l = 1, ..., 96 are performed in parallel across 100 cores with access to ample memory and storage

from Penn State’s Roar supercomputer (formerly known as the Institute for Computational and

Data Sciences Advanced CyberInfrastructure). Total computational time for this step is roughly

three days.

C.8.3 Share of External RECs Supplied and Capacity Costs For NewGeneration in 2017

We search for Θ3 =
{
γ2017
PA , γ2017

¬PA, C
N
NGCC , C

N
solar, C

N
wind

}
using a similar two stage approach

as discussed in the previous sections. In this case, the �rst stage of Feasible Weighted Least

Squares minimizes the following loss function which captures the Euclidean distance between

the model’s predicted REC prices by tier in 2017 and observed REC prices by tier in 2017 in

Pennsylvania (actual) and Rest of PJM (generation weighted) as well as model predicted total

PJM capacities expansion by technology in 2017 and observed total nameplate PJM capacities
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expansion by technology in 2017:

L (Θ3) =
∑
tech

(
yNtech − ŷNtech (Θ3)

)2
(27)

+
∑
t∈PA

(
yPA,2017
t − ŷPA,2017

t (Θ3)
)2

+
∑

t∈RPJM

(
yRPJM,2017
t − ŷRPJM,2017

t (Θ3)
)2

,

where ŷNtech (Θ3) is the model predicted estimate of the total amount of new nameplate capacity

of technology type tech added to PJM in 2017 (K̄N
tech =

∑14
s=1 K̄

N
s,tech), ŷ

PA,2017
t (Θ3) are the

model predicted REC prices by tier t under Pennsylvania’s AEPS in 2017 and ŷRPJM,2017
t (Θ3)

are the model predicted state-generation weighted average REC prices by tier t across states

in Rest of PJM with RPSs in 2017, which are calculated from the unweighted REC prices by

tier and state in PJM predicted by the model, i.e., the Lagrange multipliers/shadow prices on

(12) a�er solving for the competitive equilibrium prior to Pennsylvania joining RGGI in 2017.

yNtech, y
PA,2017
t , and yRPJM,2017

t are exogenous data. Data on new capacity in 2017 by technology

type in PJM, yNtech, is taken from PJM’s New Service �eue database (accessed on 03/21/2018

at h�ps://www.pjm.com/planning/services-requests/interconnection-queues.aspx). yPA,2017
t and

yRPJM,2017
t are calculated using the REC prices in 2017 by tier for all states with RPS’s

in PJM taken from S&P Global’s Market Intelligence - California Carbon/RGGI Allowances

(accessed on 02/19/2018 at h�ps://platform.marketintelligence.spglobal.com/web/client?auth=

inherit#markets/co2AndRGGIAllowances).

Data on generation used to construct the generation-weights for RPJM in this third phase are

calculated based upon our predicted model generation for 2016 at the conclusion of the second

phase of the numerical calibration. �e residuals from the Θ3 that solves this regression are

used to calculate σ̂tech, σ̂PA,2017
, and σ̂RPJM,2017

, given variation across technologies/tiers within

Pennsylvania/RPJM.

As before, in the second stage we search forΘ3 that minimizes the following loss function of
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the transformed variables:

L̃ (Θ3) =
∑
tech

(
y∗Ntech − ŷ∗Ntech (Θ3)

)2
(28)

+
∑
t∈PA

(
y∗PA,2017
t − ŷ∗PA,2017

t (Θ3)
)2

+
∑

t∈RPJM

(
y∗RPJM,2017
t − ŷ∗RPJM,2017

t (Θ3)
)2

,

where
∗
denotes normalization by σ̂tech on the �rst term on the right-hand side of (28), σ̂PA,2017

on the second term on the right-hand side of (28) and normalization by σ̂RPJM,2017
on the third

term on the right-hand side of (28). Since model predictions appear to be well-behaved in the

CN
tech, γ

2017
PA , and γ2017

¬PA parameter space, we solve both stages of this regression using MATLAB’s

fmincon function subject to constraints that γ2017
PA and γ2017

¬PA must individually be on the interval

[0, 1] and with starting values in the �rst regression of one in both Pennsylvania and RPJM and

starting values in the second regression equal to the solution from the �rst regression. �e �nal

γ2017
PA , γ2017

¬PA, C
N
NGCC , C

N
solar, and C

N
wind that solve (28) are 0.651, 0.869, $73,900, $135,000, and

$135,580, respectively.

C.9 Emissions Calculations

Source emissions for pollutant P = CO2, SO2,NOx,PM,VOC,NH3,CO from existing

EGUs in our model for an hour in load segment l are calculated a�er �rst descaling predicted

generation from representative existing EGU j (gEjl ) to the subset of original existing EGUs k (j)

that correspond to it (gEk(j)l). �is is then combined with linear marginal emissions rates for each

original existing EGU k, φE,Pk to calculate the source emissions released by original EGU k in an

hour in load segment l, according to:

eE,Pkl = φE,Pk gEkl. (29)

Source emissions fromnewNGCCEGUs
17
predicted by ourmodel for an hour in load segment

17
Source emissions from new solar and wind EGUs are assumed to equal zero.
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l are calculated using predicted generation from representative new EGU j in l, gNkl , and linear

marginal emissions rates for each new EGU j, φN,Pj , according to:

eN,Pjl = φN,Pj gNjl . (30)

In addition, both (29) and (30) can be summed across all hours in all load segments within a

year to obtain annual source emissions estimates:

eE,Pk =
∑
l

δlφ
E,P
k gEkl, and (31)

eN,Pj =
∑
l

δlφ
N,P
j gNjl .

�ese estimates can be reported directly, regionally aggregated, and/or possibly combined

with data on latitude and longitude to infer destination emissions across space and/or time.

Details on how generation is down-scaled from representative existing EGU j to original existing

EGU k (j), how emissions rates by pollutant for existing and new EGUs are calculated, and how

the latitude and longitude of existing and new EGUs are determined are next discussed in turn.

C.9.1 Downscaling of Existing Generation

In order to accurately calculate source emissions for original existing EGU k, we downscale

generation predicted by the model for each representative existing EGU j in an hour in load

segment l, gEjl , to generation from existing EGU k in an hour in load segment l, gEkl, for all original

existing EGUs assigned to representative EGU j, k (j) ∈ Kj . To do so, we �rst sort all original

existing EGUs k (j) in the set Kj from lowest to highest marginal costs, MCE
k(j)l. Based upon

this sort, we determine the merit order in which original units k in bin j are dispatched in l

and calculate cumulative e�ective capacity for l across all k in bin j (see, equation (18)). Where

cumulative e�ective capacity equals gEjl determines which subset of the original existing EGUs

in j are pseudo-dispatched. De�ne the marginal costs when this occurs as MCE
k∗(j)l. �ose

original EGUs k with MCE
k(j)l < MCE

k∗(j)l, are assigned generation equal to their e�ective
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capacity. For the binding original EGU k∗ their generation is set equal to the di�erence between

gEjl and cumulative e�ective capacity evaluated at k∗ − 1. Finally, those original EGUs k with

MCE
k(j)l > MCE

k∗(j)l, are assigned generation equal to zero.

C.9.2 Emissions Rates

CO2, SO2, and NOx

Similar to the procedure used to assign heat rates to existing EGUswithin our original population

of units as discussed in Section C.2.3, we �rst assign CO
2
, SO

2
, and NOx emissions rates to each

existing EGU k (j) using the best available estimate across four datasets (from most to least

accurate): CEMS, EPA’s eGrid, and S&P Global’s PJM Summary Capacity.18 For a small subset

of remaining existing EGUs for which data on emissions rates does not exist across these four

datasets, we impute emissions rates. Each of these steps is discussed in detail below, although the

assignment of emissions rates by dataset/method is provided in Table A.6.

Table A.6: CO
2
, SO

2
, and NOx Emissions Factor Assignments to Existing EGUs

Dataset/Method EGUs Assigned Emissions Rates

Final Dataset 3,095

CEMS 374

eGrid 1,490

S&P Global 801

Imputed 369

Remaining Solar/Wind/Hydro 61

To assign CO
2
emissions rates to original existing EGU k, we �rst use the 2016 CEMS. CEMS

reports measured real-time annual CO
2
emissions and annual generations used for regulatory

compliance and which we suspect are the most accurate. We calculate annual CO
2
emission

factors using the 2016 CEMS data by dividing the total annual CO
2
emissions for each CEMS EGU

by the EGU’s total annual generation. For the 374 EGUs in our original population that are also in

CEMS, we assign those units CEMS CO
2
emissions rates. Next, we assign CO

2
emissions rates to

1,490 EGUs in our original population using the CO
2
emissions rates reported in eGrid.

19
�ird, we

18
S&P Global’s PJM Summary Capacity SO

2
and NOx emissions rates are similar to those reported in NEEDS.

However, NEEDS does not report CO
2
emissions rates and so we use S&P Global’s PJM Summary Capacity emissions

rates for CO
2
, SO

2
, and NOx emissions.

19
We exclude from this step EGUs in our population and eGrid whose heat rates are above 42,545.31 BTU/kWh
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assign CO
2
emissions rates to an additional 801 EGUs using the CO

2
emissions rates reported in

S&P Global’s PJM Summer Capacity dataset.
20
Finally, 430 remaining EGUs are assigned imputed

CO
2
emissions rates equal to the average CO

2
emissions rates of all existing EGUs with assigned

CO
2
emissions rates of the same fuel type and located in the same state as the remaining EGU.

To assign SO
2
and NOx emissions rates to each existing EUG k, we �rst assign CEMS, eGrid,

S&P Global, and NEEDS SO
2
and NOx emissions rates to 2,665 existing EGUs in our original

population the same way we assign CEMS, eGrid, and S&P Global CO
2
emissions rates previously

(374 EGUs get assigned SO
2
and NOx emissions rates from CEMS; 1,490 EGUs get assigned SO

2

and NOx emissions rates from eGrid; and 801 EGUs get assigned SO
2
and NOx emissions rates

from S&P Global). Finally, we use OLS regressions to impute SO
2
and NOx emissions rates for 369

of the remaining 430 existing EGUs in our original population. We exclude from these regressions

EGUs that have fuel-types of wind, hydro, solar (61 EGUs), whose SO
2
and NOx emissions rates

are assumed to be zero. For P = SO2,NOx, we estimate the following two OLS regressions using

data on assigned existing EGUs:

φE,Pk = β0 + β1fuelk + β2ψ
E
k + β3K̄

E
k + β4fuelk × ψEk + β5fuelk × K̄E

k (32)

+ β6

(
ψEk
)2

+ β7

(
K̄E
k

)2
+ β8fuel

E
k ×

(
ψEk
)2

+ β9fuel
E
k ×

(
K̄E
k

)2
+ εk,

where φE,Pk is the emission factor of existing EGU k for pollutant P , fuelk are dummy variables

indicating the fuel type of existing EGU k, ψEk is the heat rate of existing EGU k, K̄E
k is the

nameplate capacity of existing EGU k, εk is the regression error term, and theβ are the regression

coe�cients to be estimated. �e R2
for the SO

2
emissions rates and NOx emissions rates

regressions, are 0.612 and 0.572, respectively. Given the estimated parameters from (32), we then

assign emissions rates for pollutant P equal to the predicted values for those remaining existing

EGUs given data on their fuel types, heat rates, and capacities.

and/or whose annual generation is reported to be negative since errors in CO
2
emissions rates across units appear to

be correlatedwith errors in these other observables. We parse heat rates in a similar fashion as discussed SectionC.2.3.

20
Again, we exclude from this step EGUs with S&P Global heat rates that are above 26,473.842 BTU/kWh; see,

Section C.2.3.
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�e CO
2
, SO

2
, and NOx emissions rates assigned to new NGCC EGUs located in a particular

state s equal the average of the CO
2
, SO

2
, and NOx emissions rates from existing NGCC EGUs in

state s.

PM, NH3, VOC, CO

To calculate the PM (PM
25

and PM
10
), NH

3
, VOC, and CO emissions rates for the

original population of existing EGUs, we use the EPA’s Flat File Generation Methodology

v514 (accessed on 05/19/2020 at h�ps://www.epa.gov/sites/production/�les/2015-07/documents/

�at�le methodology.pdf) with slight modi�cations regarding assignments of sulfur and ash

contents. �e calculation steps outlined in these documents are used by the EPA for post-

processing PM (PM
25

and PM
10
), NH

3
, VOC, and CO emissions from model output generated

by the Integrated Planning Model (IPM).

We �rst use generation weighted sulfur content and ash contents by state and PJM region

from the EPA 5-13 Base Case RPE Replacement File from the Results Using EPA’s Base Case v.5.13,

Detail IPM output �les, (accessed on 05/27/2020 at h�ps://www.epa.gov/sites/production/�les/

2015-08/epa base case v513 data �les.zip), then we link the heat contents with these sulfur and

ash contents from Table 9-5, page 276 (9-13), Documentation for EPA Base Case v.5.13 Using the

Integrated Planning Model (accessed on 04/05/2020 at h�ps://www.epa.gov/sites/production/�les/

2015-07/documents/documentation for epa base case v.5.13 using the integrated planning

model.pdf). A�er that we use the PMAshSulfurContent tab in the �at�le inputs 1 (accessed on

04/27/2020 on h�ps://www.epa.gov/sites/production/�les/2015-07/�at�le inputs 1.xls) to assign

sulfur and ash contents for the EGUs that are still not assigned sulfur and ash contents from the

previous step. Finally, we use Table 12, Flat File Generation Methodology v514 to assign sulfur and

ash contents to the remaining EGUs.

A�er assigning sulfur and ash contents for the all the EGUs in our original population, we

follow the Flat File Generation Methodology v514 using the imputed sulfur and ash contents to

calculate PM (PM
25
and PM

10
), NH

3
, VOC, and CO emissions rates for all the EGUs. While the Flat

File Generation Methodology v514 directly calculates total annual emissions for these pollutants,
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we instead calculate linear emissions rates for these pollutants by using heat rates instead of heat

inputs in all of the formulas in �at File Generation Methodology v514.

�e PM, NH
3
, VOC, and CO emissions rates assigned to new NGCC EGUs located in a

particular state s equal the average of the PM, NH
3
, VOC, and CO emissions rates from existing

NGCC EGUs in state s.

Emissions Calculation Veri�cation

To verify the reliability our PM, NH
3
, VOC, and CO emissions calculations, we calculate

the 2016 annual emissions for each of these P = PM,NH3,VOC,CO pollutants using

the methodology detailed in Section C.9.2 above and EPA model predictions on generation

which we then compare against the EPA’s own post-processing prediction of annual

emissions based on the same underlying generation data. To do this, we use three

data �les: NEEDS v513 (2016), the Web-Ready Parsed File EPA5-13 Base Case 2018, and the

FlatFile EPA513 BC 7c 2018 20131108 �le (both accessed on 05/27/2020 at h�ps://www.epa.gov/

sites/production/�les/2015-08/epa base case v513 data �les.zip). We �rst merge the NEEDS

dataset with the Web-Ready Parsed File EPA5-13 Base Case 2018 to link total annual generation

from theWeb-Ready Parsed File EPA5-13 Base Case 2018 to EGUs inNEEDS. Second, wemultiply

our calculated emissions rates times annual generation to calculate our estimate of imputed

annual emissions for each pollutant P for all of the EGUs in the NEEDS. We then merge the

combined dataset to the FlatFile EPA513 BC 7c 2018 20131108 which has EPA’s calculations of

annual emissions. For the sample of NEEDS units our predicted emissions estimates for pollutant

P match almost exactly with the EPA’s calculated emissions for those same units.

C.9.3 Latitude and Longitudes of Generation Sources

In order to calculate destination emissions at a particular location from source emissions

released by original existing EGUs, we need to know the latitude and longitude of each existing

EGU in our original population. We assign geographical locations to all existing EGUs k in

our original population. To do so, we use the EIA’s United States Power Plant Map (accessed

on 04/23/2020 at h�ps://www.eia.gov/maps/map data/PowerPlants US EIA.zip). �e dataset
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includes a�ribute information (e.g., ORIS plant codes, unit IDs, physical street addresses, and

longitudes and latitudes) on all operable EGUs in the United States by energy source, including

all EGUs that are operating, on standby, or are out of service in the short or long term, with a

nameplate capacity of 1 MW or more. Using ORIS plant codes and unit IDs, we are able to match

2,882 EGUs from this dataset to the same number of existing EGUs in our original population of

units. Only 213 existing EGUs from our original population remain unmatched. �ese are either

existing EGUs that are newer and might not yet be included in the United States Power Plant Map

dataset, and/or are smaller than 1MW. For 201 of these 213 remaining EGUs, wemanually perform

web searches and assign street addresses and coordinates to them. �e remaining 12 unmatched

existing EGUs from our original population are small solar PVs, hydro and biomass EGUs, which

we assign coordinates equal to the centroids of the counties in which they are located. Finally,

new EGUs are added at the state level and thus are assigned latitude and longitude coordinates

equal to the centroids of the states in which they are located.

C.10 Calibration Results

�is section presents the results from our replicated calibrated baseline for 2016 and 2017

across several dimensions: generation (Tables A.7 and A.8), new capacity (Table A.9 for 2017

only), locational marginal prices (Figures A.7 through A.10), renewable energy credit prices

(Tables A.10 and A.11), and CO
2
emissions.

Table A.7 reports our prediction of 2016 generation in Pennsylvania and Rest of PJM by

fuel type against observed 2016 data on generation from Monitoring Analytics’ 2016 State of the

Market Report, Table 3-8 PJM Generation (By fuel source (GWh)): 2015 and 2016, page 105 (accessed

on 09/27/2017 at h�ps://www.monitoringanalytics.com/reports/PJM State of the Market/2016/

2016-som-pjm-volume2.pdf). In 2016, we slightly under-predict generation in Pennsylvania and

Rest of PJM by -0.3%. Much of this is driven by small under-predictions of coal in both regions

of -0.7% and -0.5% in Pennsylvania and Rest of PJM, respectively. We also slightly over-predict

gas and under-predict generation from other sources in Pennsylvania and observe the opposite

in Rest of PJM. Table A.8 presents a similar comparison of predicted and observed generation in
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2017. �e model does a slightly be�er job of predicting total generation in both Pennsylvania and

Rest of PJM although we under-predict coal by slightly more than in 2016.

Table A.7: Comparison of Calibrated Baseline Model Prediction of PJM Generation by Fuel Type (GWh) to

2016 Historic Data

Pennsylvania Rest of PJM

Fuel Type Observed Model Predicted % Di�erence Observed Model Predicted % Di�erence

Coal 54,672 54,310 -0.7% 220,609 219,465 -0.5%

Nuclear 82,924 82,924 0.0% 196,622 196,662 0.0%

Gas 68,048 68,321 0.4% 146,974 146,104 -0.6%

Hydro 2,374 2,375 0.0% 11,312 11,312 0.0%

Wind 3,476 3,476 0.0% 14,240 14,240 0.0%

Oil 363 355 -2.5% 1,800 1,780 -1.2%

Solar 75 75 0.0% 945 944 -0.0%

Biomass 1,883 1,857 -1.4% 4,017 4,035 0.5%

Other 1,250 699 -44.0% 958 1,311 36.9%

Total 215,067 213,392 -0.3% 597,478 595,813 -0.3%

Table A.8: Comparison of Calibrated Baseline Model Prediction of PJM Generation by Fuel Type (GWh) to

2017 Historic Data

Pennsylvania Rest of PJM

Fuel Type Observed Model Predicted % Di�erence Observed Model Predicted % Di�erence

Coal 47,634 46,649 -2.1% 208,980 206,627 -1.1%

Nuclear 83,200 83,384 0.2% 204,376 204,447 0.0%

Gas 72,503 73,388 1.2% 144,255 142,576 -1.2%

Hydro 2,518 2,499 -0.8% 12,350 12,497 1.2%

Wind 3,591 3,575 -0.4% 17,124 18,315 7.0%

Oil+Other 1,692 879 -45.1% 738 1,572 113.0%

Solar 70 69 -0.4% 1,399 1,933 38.2%

Biomass 1,916 2,292 19.7% 5,974 5,924 -0.8%

Total 213,034 212,736 -0.1% 595,196 593,890 -0.2%

Table A.9 presents our prediction of new capacity expansion in 2017 (the �rst year in which

new capacity can be added) in PJM by technology type against observed 2017 data on new

capacity expansion fromNew Service�eue database (accessed on 03/21/2018 at h�ps://www.pjm.

com/planning/services-requests/interconnection-queues.aspx). Even though we only consider

variability in capacity costs by technology and not across regions, the model does a remarkable

job predicting new capacity additions in both Pennsylvania and Rest of PJM for all technology

types.
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Table A.9: Comparison of Calibrated Baseline Model Prediction of PJM New Capacity Expansion (MW) by

Technology Type and Region to 2017 Historic Data

Pennsylvania Rest of PJM

Technology Type Observed Model Predicted % Di�erence Observed Model Predicted % Di�erence

NGCC 1,340 1,270 -5.2% 1,766 1,626 -7.9%

Wind 0 0 0.0% 126 156 23.8%

Solar 0 0 0.0% 204 194 -4.4%

Figure A.7 graphically compares our prediction of the 2016 energy locational marginal price

(LMP) against observed 2016 data on the energy LMP from textitDay-Ahead Hourly LMPs for

2016 dataset (last accessed 05/15/2017 online using PJM Data Miner 2 at: h�ps://dataminer2.pjm.

com/feed/da hrl lmps) across seasons and load segments (�rst peak is winter, second is spring,

third is summer, and fourth is fall). �e energy LMP re�ects the marginal fuel costs from the

marginal EGU that clears the PJM market. �e energy LMP re�ects the market clearing price

prior to the realization of congestion mark-ups captured in the congestion LMP and as such is

driven by seasonal variation across load segments arising from variation in load, fuel prices,

e�ective capacity, and virtual bids. In general, these a�ributes of the model explain almost all

of the energy LMP variation across seasons and load segments in the observed energy LMPs in

2016.

Figure A.7: Comparison of Calibrated Baseline Model Prediction of Energy LMP to 2016 Historic Data
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Figure A.8 depicts our prediction of 2016 congestion LMPs against observed 2016 data on

congestion LMPs from textitDay-Ahead Hourly LMPs for 2016 dataset (last accessed 05/15/2017

online using PJM Data Miner 2 at: h�ps://dataminer2.pjm.com/feed/da hrl lmps) across regions,

seasons, and load segments. Variation in congestion LMPs across model regions is driven largely

by the numerically calibrated e�ective amperages across the �ve RPAMmodel links. As is clearly

shown, the numerical calibration of e�ective amperages does an exceptional job of explaining

the variation in congestion LMPs observed in 2016. Moreover, as a share of the total LMPs the

variation in congestion LMPs explains a substantial proportion of the variation in the total LMPs

discussed next.
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Figure A.8: Comparison of Calibrated Baseline Model Prediction of Congestion LMPs ($/MWh) by PJM

Region to 2016 Historic Data

Figure A.9 depicts our prediction of 2016 day-ahead LMPs against observed 2016 data on

day-ahead LMPs from textitDay-Ahead Hourly LMPs for 2016 dataset (last accessed 05/15/2017

online using PJM Data Miner 2 at: h�ps://dataminer2.pjm.com/feed/da hrl lmps) across regions,

seasons, and load segments. �e day-ahead LMP re�ects the sum of the energy LMP, congestion

LMP, and a small component arising from the marginal pre-existing regulatory costs of the
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marginal EGU. �e model under-predicts observed LMPs during peak demand periods and

slightly over-predicts during o�-peak periods in each season and region. However, the bulk

of the variation in observed LMPs across seasons and regions in 2016 is well explained by the

model. Figure A.10 repeats this analysis for 2017. Again the model consistently explains a great

deal of the observed variation in LMPs across regions, seasons, and load segments, although there

is greater within season variability since load segments are sorted based upon lowest to highest

load in 2016.
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Figure A.9: Comparison of Calibrated Baseline Model Prediction of Day-Ahead LMPs ($/MWh) by PJM

Region to 2016 Historic Data
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Figure A.10: Comparison of Calibrated Baseline Model Prediction of Day-Ahead LMPs ($/MWh) by PJM

Region to 2017 Historic Data

Table A.10 reports our prediction of 2016 generation weighted REC prices against observed

2016 data, using 2016 REC prices from S&P Global’sMarket Intelligence - California Carbon/RGGI

Allowances (accessed on 07/02/2017 at h�ps://platform.marketintelligence.spglobal.com/web/

client?auth=inherit#markets/co2AndRGGIAllowances) and our predicted 2016 generation. In

2016 we slightly over-predict REC prices under Pennsylvania’s AEPS across all three tiers,

65

https://platform.marketintelligence.spglobal.com/web/client?auth=inherit#markets/co2AndRGGIAllowances
https://platform.marketintelligence.spglobal.com/web/client?auth=inherit#markets/co2AndRGGIAllowances


whereas we slightly under-predict across all three tiers the generation weighted average REC

price across states in Rest of PJMwith RPSs. Table A.8 repeats this analysis for 2017. Pennsylvania

over-predicts by slightly more across all three tiers and Rest of PJM also over-predicts slightly

across all three tiers.

Table A.10: Comparison of Calibrated Baseline Model Prediction of Generation Weighted REC prices

($/MWh) in Pennsylvania and Rest of PJM to 2016 Historic Data

Pennsylvania Rest of PJM

AEPS/RPS Tier Observed Model Predicted % Di�erence Observed Model Predicted % Di�erence

Tier 1 $4.35 $4.60 5.7% $46.00 $36.39 -20.9%

Tier 2 $12.45 $13.17 5.8% $3.99 $3.18 -20.3%

SREC $0.0028 $0.0029 3.6% $0.48 $0.38 -20.8%

Table A.11: Comparison of Calibrated Baseline Model Prediction of Generation Weighted REC prices

($/MWh) in Pennsylvania and Rest of PJM to 2017 Historic Data

Pennsylvania Rest of PJM

AEPS/RPS Tier Observed Model Predicted % Di�erence Observed Model Predicted % Di�erence

Tier 1 $2.95 $4.12 39.7% $33.38 $35.53 6.4%

Tier 2 $8.44 $11.81 39.9% $2.89 $3.08 6.6%

SREC $0.0019 $0.0027 42.1% $0.35 $0.37 5.7%

In 2016, RPAM predicts total CO
2
emissions of 359.6 MMT or just 0.3% more CO

2
emissions

than the 358.6MMT reported byMonitoring Analytics’ 2016 State of the Market Report. In contrast

in 2017, RPAM under-predicts CO
2
emissions by -3.0%, or 364.4 MMT relative to the 375.7 MMT

in Monitoring Analytics’ 2017 State of the Market Report. �is is largely a�ributable to the slightly

greater under-prediction of coal generation in 2017.

D Intertemporal Dynamics
�e numerical model generates a time path of economic outcomes at one year intervals

between 2018 and 2030. To account for underlying dynamic trends that alter our model

predictions outside of the economic phenomena explicitly represented in RPAM, we allow for

load, fuel prices, external RECs, and the costs of adding new capacity to adjust exogenously each

year.

We assume that annual load grows 0.42% per year in PJM. �is equals the average annual
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growth rate in PJM load observed between 2013-2018, calculated from annual loads provided in

the PJM Load Forecast Report.

Daily natural gas spot price for 2017 is taken from Bloomberg’s Daily Natural Gas Spot Price

dataset for 2017 and converted into natural gas spot price by load segment for 2017 using the

same method mentioned in Section C.2.3 for year 2016. Transportation prices for natural gas

for 2017 and going forward are kept constant at the 2016-level. Coal, oil and uranium in 2017

are calculated as coal, oil and uranium in 2016 as assigned in C.2.3 times their 2016-2017 growth

rates by census region. 2016-2017 delivered growth rates for these fuels are calculated from the

EIA’s Annual Energy Outlook 2018, Table: Energy Prices by Sector and Source, Case: Reference case,

which has observed coal, oil and uranium prices for the electric power by census region in 2016

and 2017 in 2017 $. We calculate 2016-2017 growth rates for these coal, oil and uranium based

on observed coal, oil and uranium prices in 2016 and 2017 a�er converting them to 2016$. We

assume that prices for other fuel types (biomass, other fuel) in 2017 and going onward stay the

same as in 2016.

Similarly, delivered natural prices by load segment for 2018 are calculated from daily natural

gas spot price for 2018 is taken from Bloomberg’s Daily Natural Gas Spot Price dataset for 2018

and natural gas transportation prices �xed at the 2016-level. Coal, oil and uranium in 2018 are

calculated as coal, oil and uranium times their 2017-2018 growth rates by census region. 2017-

2018 delivered growth rates for these fuels are calculated from EIA’s Annual Energy Outlook 2019,

Table: Energy Prices by Sector and Source, Case: Reference case, which has observed coal, oil and

uranium prices for the electric power by census region in 2017 and 2018 in 2018 $. We calculate

2017-2018 growth rates for these coal, oil and uranium based on observed coal, oil and uranium

prices in 2017 and 2018 a�er converting them to 2016$.

From 2019 onward, natural gas, coal, oil and uranium fuel prices are assumed to grow

following the fuel price growth rates by census region imputed from the fuel price projections

by census region provided in the Annual Energy Outlook 2018, Table: Energy Prices by Sector and

Source, Case: Reference case. �ese annual growth rates for each year a�er 2018 are calculated
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using the 2018 fuel price projections in AEO 2018 and the fuel price projections for each year

a�er that, a�er converting them to 2016$. Compared to the 2018 baseline, the fuel price growth

rates from 2019-2030 used in our model are as follows:

Table A.12: Fuel Price Growth Rates 2019 to 2030 compared to 2018 (in %)

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Natural Gas 9.03 14.71 11.94 12.18 14.69 16.38 18.89 18.98 19.77 19.36 21.82 21.63

Coal 0.84 1.92 2.07 2.02 2.00 2.42 2.82 2.86 2.63 2.66 3.18 3.40

Distillate Oil 8.98 33.91 46.75 53.93 59.90 61.07 61.73 61.88 63.76 65.23 67.84 69.27

Uranium 0.15 0.46 0.62 0.77 1.08 1.23 1.54 1.69 2.00 2.16 2.31 2.62

�e amount of external RECs available to supply to Pennsylvania exclusively (e.g.,

γPA
∑

q∈PA r̄q) are assumed to grow by 4% per year whereas the amount of external RECs

available to supply all states in PJM with RPSs (e.g., γ¬PA
∑

q∈6=PA r̄q) are assumed to grow by

5% per year. For w = {PA,¬PA} and y = {2016, 2017}, these growth rates re�ect the growth

between 2016 and 2017 in external RECs available for supply to states in PJM with RPSs given

the numerically calibrated γyw’s and data on the total amount of external RECs available (i.e.,∑
q∈w r̄

y
q ); that is, the growth rates equal:

γ2017w

∑
q∈w r̄

2017
q −γ2016w

∑
q∈w r̄

2016
q

γ2016w

∑
q∈w r̄

2016
q

.

We assume a growth rate in the annual cost of adding new wind capacity of -1.7%. �is comes

from Wiser et al. (2016), in which the authors survey di�erent wind technology experts and �nd

that onshore wind costs would decline by 24 % by 2030 relative to 2014, which translates into

an average annual growth rate of -1.7 %. We assume a growth rate in the annual cost of adding

new solar capacity of -2.2%. �e U.S. Department of Energy’s SunShot Initiative is targeting a

50% reduction in utility scale solar photovoltaic costs between 2020 and 2030. Although the 2020

SunShot target for utility scale solar was achieved in 2017, this 2030 target ismuchmore ambitious

(SETO, 2017), so we instead assume a 25% reduction in costs by 2030 relative to 2017, which

translates into an average annual growth rate of -2.2 %. We assume a growth rate of zero in the

annual cost of adding new NGCC capacity.
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E Model Validation

Comparison of Model Predictions to Historic Data

We calibrate the model to 2016 and 2017 so we are able to compare our model’s predictions for

2018 against observed historic data for 2018 across several dimensions: generation, new capacity,

locational marginal prices, and CO2 emissions. RPAM is calibrated to capture average annual

economic adjustments and it does not capture all idiosyncratic exogenous shocks unique to 2018

which explain the 2018 allocation observed in the historic data. As such, expecting RPAM to

exactly predict a single year of observed data across all dimensions is not within the scope of

this validation exercise. Moreover, it does not make sense to design the model to achieve such an

outcome as it would likely do a less satisfactory job of explaining average annual outcomes.

Table A.13 presents our out-of-sample model prediction of generation in PJM by fuel type

against observed 2018 data on generation from Monitoring Analytics’ 2018 State of the Market

Report, Table 3-9 Generation (By fuel source (GWh)): 2017 and 2018 on page 122 (accessed

on 01/11/2019 at h�ps://www.monitoringanalytics.com/reports/PJM State of the Market/2018/

2018-som-pjm-volume2.pdf). Overall, we over-predict total generation by 0.5% re�ecting a slight

di�erence between our 2018 load given the intertemporal dynamics discussed in Section D and

observed 2018 load in PJM. For the fuel types which contribute the most to generation in 2018,

coal, nuclear, and natural gas, our predictions are o� less than �ve percent in 2018. We under-

predict Oil+Other and over-predict solar and biomass by more than �ve percent, but these errors

are small in absolute terms.
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Table A.13: Comparison of Out of Sample Model Prediction of PJM Generation by Fuel Type (GWh) to

2018 Historic Data

Fuel Type Observed Model Predicted % Di�erence

Coal 239,612 229,691 -4.1%

Nuclear 286,115 287,678 0.6%

Gas 256,701 267,483 4.2%

Hydro 19,416 19,441 0.1%

Wind 21,628 22,596 4.5%

Oil+Other 3,581 2,480 -30.8%

Solar 2,111 3,192 51.2%

Biomass 8,390 9,044 7.8%

Total 837,594 841,605 0.5%

Table A.14 presents our out-of-sample model prediction of new capacity expansion in PJM by

technology type against observed 2018 data on new capacity expansion from PJM’s New Service

�eue database (accessed on 04/21/2019 at h�ps://www.pjm.com/planning/services-requests/

interconnection-queues.aspx). In 2018 we over-predict new solar and wind capacity, but under-

predict new NGCC capacity with total new capacity under-predicted slightly by -7.9%.

Table A.14: Comparison of Out of Sample Model Prediction of PJM New Capacity Expansion (MW) by

Technology Type and Region to 2018 Historic Data

Technology Type Observed Model Predicted % Di�erence

NGCC 9,442 7,850 -16.9%

Wind 762 987 29.5%

Solar 265 804 203.4%

Total 10,469 9,641 -7.9%

Figure A.11 graphically compares our out-of-sample model predictions of locational marginal

prices in PJM by region and load segment against observed 2018 data on day-ahead locational

marginal prices from textitDay-Ahead Hourly LMPs for 2018 dataset (last accessed 03/19/2019

online using PJMData Miner 2 at: h�ps://dataminer2.pjm.com/feed/da hrl lmps), averaged based

on variation inwithin region load (across load zoneswithin each PJMRPAMmodel region) in each

2016 load segment. Overall, our out-of-sample predicted LMPs match remarkably well although

with more variation than observed in the calibrated outcomes in 2016 and 2017 (see, Figures A.9

and A.9), likely driven by idiosyncratic shocks unique to 2018 which also drive a lot of LMP
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variation across region and load segments and which are exogenous to our model. While we

initially had some reservations regarding the granularity in which we characterize load segments

using 2016 load, these concerns do not appear to emerge in the out-of-sample model predictions

of LMPs. While there is more variability across the load segments across regions and for each

season, re�ecting the fact that a peak load hour in 2018 need not be the same as in 2016, many of

the factors correlated with LMPs in that load segment hour are captured by our model (e.g., load,

fuel prices, e�ective capacity, virtual bidding, and e�ective amperage).
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Figure A.11: Comparison of Out of Sample Model Prediction of Day-Ahead LMPs ($/MWh) by PJM Region

to 2018 Historic Data

Finally, we compare our out-of-sample model prediction of total CO
2
emissions released by

EGUs in PJM against observed 2018 data on CO2 emissions from Monitoring Analytics’ 2018

State of the Market Report. Our estimate of 351.3 MMT CO
2
under-predicts the value reported by

Monitoring Analytics by just -5.1%.
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F Additional Policy Details

F.1 Clean Air Act

�e federal Acid Rain Program (ARP) was established under Title IV of the 1990 Clean Air Act

(CAA) Amendments to reduce SO2 and NOx emissions that cause acid rain from the U.S. power

sector. It includes a SO
2
program, which introduced a SO

2
cap-and-trade system, and a NOx

program, which does not cap NOx emissions nor introduce a NOx trading program, but instead

targets certain major NOx emi�ing coal-�red EGUs, limiting their total annual NOx emissions or

their emission factors.

�e ARP SO
2
program establishes a cap-and-trade systemwhich clears annually, under which

a�ected EGUs have to possess SO
2
allowances equal to their annual SO

2
emissions. A�ected EGUs

are free to choose how to reduce SO
2
emissions to meet targets, including buying, selling, and

banking SO
2
allowances. �e ARP SO

2
program’s goal is to annually reduce SO

2
emissions by

10 million tons relative to the 1980 SO
2
emissions level. �is translates to se�ing annual caps

that vary in di�erent phases of the program on a�ected EGUs. �e ARP SO
2
program has two

phases. Phase 1 was from 1995 to 1999, targeting 263 EGUs at 110 facilities in 21 eastern and

midwestern states. Towards the end of phase 1 of the program, an additional 182 EGUs joined,

bringing the total number of a�ected EGUs in phase 1 of the program to 445 a�ected EGUs.

During phase 1, the EPA set an annual SO
2
emission cap at 5.7 million tons which equals the

number of SO
2
allowances it issues. Phase 2 began in 2000 and is still ongoing, adding more

EGUs into the program including smaller fossil fuel EGUs. By this time, the ARP SO
2
program

targets all existing and new fossil fuel EGUs with capacity of 25 MW or more in all of the U.S.,

except Alaska, Idaho (which has no fossil fuel EGUs), and Hawai’i. During phase 2, the EPA set

an annual SO
2
emissions cap of 8.95 million tons which equals the number of SO

2
allowances it

issues. A�er the end of each year, all a�ected EGUs submit their SO
2
allowances that cover their

SO
2
emissions for that year to the EPA, who then cancels all the submi�ed allowances. We do

not consider the ARP NOx program in our model.
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F.2 Cross-State Air Pollution Rule

�eCross-State Air Pollution Rule (CSAPR) was issued by the EPA in 2011, requiring 23 states

in the eastern half of the United States to reduce annual SO
2
andNOx emissions to help downwind

areas maintain or a�ain the annual PM
2.5

levels of the 2006 and/or 1997 national ambient air

quality standards (NAAQS). CSAPR also requires 25 states to reduce ozone season NOx emissions

to help downwind areas maintain or a�ain the annual ozone level of the 2008 and/or 1997 ozone

NAAQS. Similar to the ARP, CSAPR establishes SO
2
and NOx cap-and-trade systems to reduce

SO
2
and NOx emissions. So far, there are three cap-and-trade programs under CSAPR: the annual

SO
2
program (which establishes separate trading regimes for SO

2
group 1 and SO

2
group 2 states),

the annual NOx program, and the NOx ozone season program (which also establishes separate

trading regimes for NOx group 1 andNOx group 2 states). �eCSAPRNOx ozone season program

was only recently �nalized in 2016 and we do not consider it in our analysis. As such, we only

consider the CSAPR annual SO
2
andNOx programs. To incorporate the ARP SO

2
program, the

CSAPR annual SO
2
program, and the CSAPR annual NOx program into the model, marginal pre-

existing regulatory costs (see equation (19)) includes the costs to covered EGUs of buying SO2

and NOx emission allowances necessary for compliance with the ARP and CSAPR, where the

annual allowance prices from these programs are assumed to vary exogeneously across years;

see Section C.2.3.

F.3 Nuclear Subsidies

In Illinois and New Jersey, eligible existing nuclear EGUs qualify for nuclear excise subsidies.

�ese excise subsidies are statutorily authorized by each state with the total amount of subsidy

disbursement capped each year. In New Jersey this is achieved through the confusingly titled Zero

Emission Certi�cate program, which is not to be confused with the trade of renewable energy

certi�cates as permi�ed New Jersey’s Renewable Portfolio Standard, from which nuclear units

are excluded. Moreover, in Illinois this is achieved through the equally confusingly titled Zero

Emission Standard, which is not to be confused with Illinois’ Renewable Portfolio Standard, from
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which nuclear units are also excluded.

F.3.1 New Jersey

In New Jersey, the nuclear subsidy program started in 2019. �e nuclear subsidy program

is intended to subsidize eligible nuclear EGUs which are at risk of early retirement in order to

maintain the environmental bene�ts that the EGUs provide. Eligible nuclear EGUs in New Jersey

can collect one zero emission certi�cate (ZEC) for each MWh of energy produced. Unlike REC

and RGGI allowance prices which are determined ex post through virtual market clearing, ZEC

prices are established ex ante by the New Jersey Board of Public Utilities (NJBPU).�e ZEC ‘price’

amounts to an excise subsidy per MWh of electric power produced by eligible existing nuclear

EGUs that is scaled up or down each year by the regulator such that total subsidy payments does

not exceed $300 million per year.

To calculate the ZEC price in New Jersey, we follow the ZEC price calculation method

provided in Chapter 16 of New Jersey’s ZEC Act Legislation (accessed on 02/12/2020 at //www.

njleg.state.nj.us/2018/Bills/AL18/16 .HTM). To calculate the ZEC price in New Jersey, we divide

the full recovery of all costs associated with the electric public utility’s required procurement of

ZECs at the end of the prior energy year by the greater of: 40% of the total number of MWhs of

electricity distributed by the electric public utilities in New Jersey in the prior energy year, or the

number of MWhs of electricity generated in the prior energy year by the nuclear power plants

authorized to receive the subsidy. New Jersey has approved three existing eligible nuclear EGUs

to receive subsidies thus far (Hope Creek and Salem 1 and 2), and whose total generation in 2018

is 28,441,726 MWh, which is less than 40% of New Jersey’s total generation in 2018, 29,963,300

MWh (= 0.4 × 74, 908, 250), where 74,908,250 MWh is the total New Jersey generation in 2018

according to the EIA’s New Jersey 2018 State Electricity Pro�le.

�us, the formula for calculating the excise subsidy in 2019 is given by:

pZECNJ =
min{pRPgRS, 300000000}

29963300
(33)

where pRP is the electricity price charged to ratepayers in $/MWh to �nance the nuclear subsidy
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program, and gRS is the total electricity sold to consumers in MWh in the previous year (2018).

pRP has been set by the NJBPU to $4/MWh. gRS equals 76,016,762 MWh in 2018 according to the

EIA’s New Jersey 2019 State Electricity Pro�le. Since pRPgRS = $304, 067, 048 > $300, 000, 000,

the excise subsidy in 2019 is pZECNJ =
$300, 000, 000

29, 963, 300
= $10.012 per MWh. Starting in 2019, this

is also deducted from rcEk for the three approved nuclear units in New Jersey and thus accounted

for in the producer surplus estimated for those EGUs. In addition, the total value of subsidy

payments are deducted from annual consumer surplus calculated for East RPJM. We assume that

this subsidy remains in place through 2030.

F.3.2 Illinois

In Illinois, all existing nuclear EGUs are eligible to receive a nuclear subsidy or ZEC price

in 2019 of $16.50/MWh, unless $16.50 minus the di�erence in the annual average and baseline

market price indices is less than zero, in which case the subsidy is zero. �e baseline market

price index is $31.40 as de�ned in subparagraph (B) of paragraph (1) of subsection (d-5) of the

Illinois Power Agency Act, Section 1-75(d-5) (also known as the Zero Emission Standard). Using

data on locational marginal prices predicted by our model, we calculate annual average market

price index in 2019 of $35.35. Since 16.50 − (35.35 − 31.40) = 12.55 > 0, the nuclear excise

subsidy to Illinois units equals $16.50/MWh. Starting in 2019, this is deducted from rcEk for all

nuclear units in Illinois and PJM and thus accounted for in the producer surplus estimated for

those EGUs. In addition, the total value of subsidy payments are deducted from annual consumer

surplus calculated for West RPJM. We assume that this subsidy remains in place through 2030.

F.4 Regional Greenhouse Gas Initiative

�eRegional Greenhouse Gas Initiative (or RGGI) is a regional cap-and-trade program on CO
2

emissions from a�ected (with capacities of 25 MW or more) fossil-fuel EGUs in the northeastern

United States in which states voluntarily elect to have their a�ected fossil-fuel EGUs participate.

Currently ten states participate in RGGI (e.g., SRGGI ): Connecticut, Delaware, Maine, Maryland,

Massachuse�s, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. New Jersey

le� the program in 2011 but re-entered the program in January 2020. Virginia recently passed
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the Clean Economy Act and is scheduled to join RGGI in 2021. Governor Wolf issued Executive

Order 2019-07 in October 2019 (last amended June 22nd, 2019) authorizing Pennsylvania to join

RGGI by 2022. Although we do not explicitly track the capacity of individual new NGCC units,

we assume that all new NGCC capacity are subject to RGGI.

�e RGGI program sets annual caps on the total amount of CO
2
emissions that can be released

from a�ected fossil-fuel EGUs in RGGI participating states. �ese caps decline over time. A�ected

EGUs are required to hold allowances equal to their CO
2
emissions over a three-year control

period. �e control periods are for every three years. �e �rst four control periods are: 2009-

2011, 2012-2014, 2015-2017, and 2018-2020. Information on RGGI caps and adjusted allowance

budgets assigned to states (e.g., ĒRGGI
s for all s in RGGI over time) are taken from RGGI and state

authorizing legislation. �rough 2020, adjusted allowance budgets re�ect the adjustments made

to RGGI allowance budgets as a result of the �rst and second control period interim adjustments

for banked allowances made by RGGI. Using historical data on banked permits discussed in

Section C, we also assume that there will be a future third control period interim adjustment for

banked allowances impacting caps from 2021 to 2025 that re�ects the formulas reported in recent

authorizing legislation in Virginia and New Jersey and which is similar to the second control

period adjustment. We currently do not consider interactions from Pennsylvania’s entry into

RGGI with Pennsylvania’s Act 129 program, nor explicitly represent the waste-coal provisions

under consideration by the Pennsylvania Department of Environmental Protection.

Every quarter, participating states issue a number of allowances equal to their cap, which

declines over the years as the cap declines. A�er every three years, each EGUmust report its total

carbon emissions and submit an equal number of emission allowances that cover these emissions.

Starting in the third control period (2015), each EGU must hold a number of allowances equal to

50% of its CO
2
emissions during the �rst two calendar years of each three-year control period.

Each EGU then must hold the number of allowances equal to 100% of its remaining emissions for

the three-year control period at the end of the three year control period.

Aside from the annual available allowance budget, RGGI also has a number of allowances
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under the Cost Containment Reserve (CCR) that it can auction whenever the clearing price at

auction exceeds the CCR trigger price. �e CCR budget replenishes annually, starting at 5 million

allowances in 2014 (the year the CCR started) and 10 million allowances each year a�er. In

2020 and onward, CCR budget will be 10% of the regional cap each year. Once released, CCR

allowances are released until the �nal clearing price equals the CCR trigger price or the CCR is

exhausted, in which case the clearing price can be higher than the CCR trigger price. �e CCR

trigger price is $4 in 2014, $6 in 2015, $8 in 2016, $10 in 2017 and increases 2.5% each year a�er.

�en the CCR trigger price will be $13.00 in 2021 and will increase by 7% per year therea�er.

�rough 2030, we �nd in our model simulations that the so� price ceiling established by CCR

trigger prices is never binding, with or without Pennsylvania’s entry into RGGI.

RGGI also includes a hard price �oor orminimum reserve price. In 2017, RGGI had aminimum

reserve price of $2.15 per allowance. Each calendar year therea�er, the minimum reserve price

is 1.025 multiplied by the minimum reserve price from the previous calendar year, rounded to

the nearest whole cent. In addition, beginning in 2021, RGGI states can also access an Emissions

Containment Reserve (ECR), which provides a secondary so� price �oor. States who implement

ECR will withhold allowances equal to 10% of the allowances in their annual base budget from

circulation to secure additional emission reductions if allowance prices fall below ECR trigger

prices. �e ECR trigger price will be $6.00 in 2021, and rise at 7% per year therea�er. �rough

2030, we �nd in our model simulations that hard and so� price �oors established by the minimum

reserve price and ECR trigger prices are never binding, with or without Pennsylvania’s entry into

RGGI.

F.5 Alternative Energy/Renewable Portfolio Standards

Many states in PJM alternative energy/renewable portfolio standards (generally, RPSs) which

specify that a minimum fraction (e.g., R̄st) of that state’s annual total generation that must come

from various subsets of generation sources, typically renewable generators. In 2018, there are

nine states in PJM that have RPSs: Delaware, Illinois, Maryland, Michigan, New Jersey, North

Carolina, Ohio, Pennsylvania, and the District of Columbia. �ere are two states in PJM that have
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voluntary RPS (Virginia and Indiana) and three states in PJM that do not have an RPS (Kentucky,

Tennessee, and West Virginia). We only model RPS in the nine states that have mandatory RPSs,

of which four states (District of Columbia, Maryland, New Jersey and Pennsylvania) classify their

RPS into tier 1 and tier 2 RPS, under which di�erent eligible renewable energy technologies are

clearly de�ned in each state. �e other �ve states (Delaware, Illinois, Michigan, North Carolina

andOhio) do not classify their RPS into di�erent tiers in 2017 but their eligible technologies are for

the most part identical to tier 1 resources and are modeled as tier 1 resources. By 2030, District of

Columbia’s tier 2 RPS is projected to decline to 0 % and thus in 2030 only the tier 1 RPS is modeled

for the District of Columbia. Most states with required and voluntary RPS standards also have an

additional, separate tier that targets generation from solar power (Solar RPS or SRPS). RPS shares

(e.g., R̄st, here reported in percentage terms) are provided for the years 2017 and 2030 in Tables

A.15 and A.16.

Eligible units are those EGUs in state s whose generation is targeted for expansion by the

state-tier RPS constraint st (see, equation (12)), as summarized in Table A.17. Ineligible units

are those EGUs in state s whose generation is not targeted for expansion by the state-tier RPS

constraint st, but which must be considered for purposes of evaluating the state’s RPS constraint.

�e precise subset of eligible new and existing EGUs under state-tier RPS constraint st, Jst, di�er

across state RPS’s and tier t according to each state’s RPS authorizing statute. Likewise, the subset

of eligible and ineligible new and existing EGUs for each state s, Jst, may di�er across state

RPSs, but generally re�ects the total annual generation dispatched in that state. Generation from

eligible units generates renewable energy certi�cates (RECS, or for the SRPS, SRECS) which are

used to evaluate compliance with the state RPS in a given year and can be freely traded among

eligible and ineligible EGUs within each state. In addition, for some state-tier RPS constraints st,

we also allow external RECs to be purchased by eligible EGUs outside of PJM, as discussed above.

Finally, we assume that generation from new wind and solar capacity expansions in each state

are eligible EGUs for states with RPSs in PJM.
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Table A.15: RPS Targets by State and Tier in PJM in 2017

PJM State State Number RPS Tier 1 RPS Tier 2 Solar RPS

DC 1 13% 1.5% 0.98%
DE 2 16% N/A 1.5%
IL 3 11.5% N/A 6%
IN 4 N/A N/A N/A

KY 5 N/A N/A N/A

MD 6 13.1% 2.5% 1.15%
MI 7 10% N/A N/A

NC 8 6% N/A 0.14%
NJ 9 13.5% 2.5% 3%
OH 10 3.5% N/A 0.22%
PA 11 6% 8.2% 0.2933%
TN 12 N/A N/A N/A

VA 13 N/A N/A N/A

WV 14 N/A N/A N/A

Table A.16: RPS Targets by State and Tier in PJM in 2030

PJM State State Number RPS Tier 1 RPS Tier 2 Solar RPS

DC 1 42% 0% 4.5%
DE 2 25% N/A 3.5%
IL 3 25% N/A 6%
IN 4 10% N/A N/A

KY 5 N/A N/A N/A

MD 6 20% 2.5% 2.5%
MI 7 35% N/A N/A

NC 8 12.5% N/A 0.2%
NJ 9 50% 2.5% 2.21%
OH 10 12.5% N/A 0.5%
PA 11 8% 10% 0.5%
TN 12 N/A N/A N/A

VA 13 N/A N/A N/A

WV 14 N/A N/A N/A
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Table A.17: Characterization of Eligible Generation Units by State RPS Tier

State Tier 1 RPS Tier 2 RPS Eligible Location

DC (1) Solar PV, (2) solar thermal,

(3) wind, (4) biomass (>65%
e�ciency), (5) methane from a

land�ll or wastewater treatment

plant, (6) geothermal, (7) ocean

including energy from waves,

tides, currents, and thermal

di�erences, (8) fuel cells that

produces electricity from a Tier

1 renewable source.

(1) Hydroelectric power other

than pump storage generation.

�e facility must have existed

and been operational as of

January 1, 2004

Sources must be located (1)

within the PJM region or (2)

an adjacent state to the PJM

region or (3) outside the PJM

region or adjacent state but in a

control area that is adjacent to

the PJM Region, if the electricity

is delivered into the PJM Region.

DE (1) Solar, (2) wind, (3) ocean,

(4) geothermal, (5) fuel cell

powered by renewable fuels,

(6) combustion of gas from

the anaerobic digestion of

organic material, (7) small

hydroelectric facility (≤ 30

MW), (8) sustainable biomass

excluding waste to energy, (9)

land�ll methane gas

(1) EGUs in commercial

operation a�er 12/31/1997.

No more than 1 percent of each

year’s sales may come from

resources that are not new

Sources must be located (1)

within or (2) imported into the

PJM region.

IL (1) Wind, (2) solar thermal

energy, (3) PV cells and panels,

(4) bio-diesel, (5) anaerobic

digestion, (6) crops and

untreated and unadulterated

organic waste biomass, (7)

tree waste, in-state land�ll

gas, (8) hydro-power that does

not involve new construction

or signi�cant expansion

of hydro-power dams, (9)

other alternative sources of

environmentally preferable

energy.

Sources must be located (1) in

IL or (2) from adjoining states if

approved by the Illinois Power

Agency, or (3) within portions of

the PJM and MISO footprint in

the US.

Continued on next page
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Table A.17 – Continued from previous page
State Tier 1 RPS Tier 2 RPS REC Eligible Location

IN
∗
4 (1) Solar energy, (2) PV cells

and panels, (3) dedicated crops

grown for energy production,

(4) organic waste biomass, (5)

hydro-power, (6) fuel cells,

(7) hydrogen, (8) energy from

waste to energy facilities

including energy derived

from advanced solid waste

conversion technologies, (9)

energy storage systems or

technologies, (10) geothermal

energy, (11) coal bed methane,

(12) industrial byproduct

technologies that use fuel or

energy that is a byproduct of

an industrial process, (13) waste

heat recovery from capturing

and reusing the waste heat in

industrial processes for heating

or for generating mechanical

or electrical work, (14) land�ll

methane recovery, (15) demand

side management or energy

e�ciency initiatives, (16) a clean

energy project described in the

statute, (17) nuclear energy,

(18) distributed generation

connected to the grid, (19)

combined heat and power, (20)

electricity that is generated

from natural gas at a facility

constructed in Indiana a�er

July 1, 2011 which displaces

electricity generation from an

existing coal �red generation

facility.

At least 50 percent of RECsmust

be purchased from resources

located within Indiana.

KY No RPS.

Continued on next page
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Table A.17 – Continued from previous page
State Tier 1 RPS Tier 2 RPS REC Eligible Location

MD (1) Solar, (2) wind, (3) qualifying

biomass, (4) methane from a

land�ll or wastewater treatment

plant, (5) geothermal, (6) ocean,

(7) fuel cell powered by

methane or biomass, (8) small

hydroelectric plant (¡ 30 MW),

(9) poultry li�er incineration

facilities in Maryland, (10)

waste-to-Energy facilities

in Maryland, (11) certain

geothermal heating and cooling

systems and biomass systems

that generate thermal energy.

(1) Hydroelectric power

other than pumped storage

generation

Source must be (1) located in the

PJM Region; or (2) outside the

area described in item (1) but in

a control area that is adjacent

to the PJM service territory, if

the electricity is delivered into

the PJM service territory. Solar

resources must be connected

to the distribution grid serving

Maryland.

MI (1) Biomass, (2) solar PV, (3)

solar thermal, (4) wind, (5)

geothermal, (6) municipal solid

waste (MSW), (7) land�ll gas,

(8) existing hydroelectric, (9)

tidal, wave, and water current

(e.g., run of river hydroelectric)

resources.

Resources must be located

within Michigan or anywhere

in the service territory of retail

electric provider in Michigan

that is not an alternative

electric supplier. �ere are

many exceptions to these

requirements.

Continued on next page
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Table A.17 – Continued from previous page
State Tier 1 RPS Tier 2 RPS REC Eligible Location

NC (1) Solar-electric, (2) solar

thermal, (3) wind, (4) hydro-

power (≤ 10 MW), (5) ocean

current or wave energy, (6)

biomass that uses Best Available

Control Technology (BACT)

for air emissions, (7) land�ll

gas, (8) combined heat and

power (CHP) using waste heat

from renewables, (9) hydrogen

derived from renewables,

(10) and electricity demand

reduction. Up to 25% of the

requirement may be met

through energy e�ciency

technologies, including CHP

systems powered by non-

renewable fuels. A�er 2021, up

to 40% of the standard may be

met through energy e�ciency.

Dominion, the only utility

located in both the state of

North Carolina and PJM, may

purchase RECs from anywhere.

NJ (1) Solar technologies, (2)

PV technologies, (3) wind

energy, (4) fuel cells powered by

renewable fuels, (4) geothermal

technologies, (5) wave or tidal

action, (6) methane gas from

land�lls or a biomass facility

provided that the biomass

is cultivated and harvested

in a sustainable manner, (7)

hydroelectric facilities (≤ 3

MW) that are located in NJ and

placed in service a�er July 23,

2012.

(1) Resource recovery facility

(subject to quali�cations), (2)

small hydroelectric power

facility (< 30 MW)

Source must be (1) within or (2)

delivered into the PJM region. If

the la�er, the energy must have

been generated at a facility that

commenced construction on or

a�er January 1, 2003

Continued on next page
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Table A.17 – Continued from previous page
State Tier 1 RPS Tier 2 RPS REC Eligible Location

OH (1) Solar photovoltaics (PV),

(2) solar thermal technologies

used to produce electricity,

(3) wind, (4) geothermal,

(5) biomass, (6) biologically

derived methane gas, land�ll

gas, certain non-treated waste

biomass products, (7) solid

waste (as long as the process to

convert it to electricity does not

include combustion), (8) fuel

cells that generate electricity,

certain storage facilities, and

quali�ed hydroelectric facilities,

(9) certain co-generation

and waste heat recovery

system technologies that

meet speci�c requirements,

(10) distributed generation

systems used by customers

to generate electricity using

the aforementioned eligible

renewable resources, (11)

run-of-the-river hydroelectric

systems on the Ohio River

(> 40 MW).

Source must be (1) in-state

facilities or (2) can be shown to

be deliverable into the state.

PA (1) Solar PV and solar thermal

energy, (2) wind power, (3)

Low-impact hydro-power,

(4) geothermal energy, (5)

biologically derived methane

gas, (6) generation of electricity

utilizing by-products of the

pulping process and wood

manufacturing process

including bark, wood chips,

sawdust and lignin in spent

pulping liquors (in-state

resources only), (7) biomass

energy, (8) coal mine methane.

(1) Waste coal, (2) distributed

generation systems, (3) demand-

side management, (4) large-

scale hydro-power (including

pumped storage), (5) municipal

solid waste, (6) generation of

electricity utilizing by-products

of the pulping process and

wood manufacturing process

including bark, wood chips,

sawdust and lignin in spent

pulping liquors, (7) integrated

combined coal gasi�cation

technology.

Sourcemust be (1) located inside

the geographical boundaries

of this Commonwealth or (2)

within the service territory

of any regional transmission

organization that manages the

transmission system in any part

of this Commonwealth.

TN No RPS

Continued on next page
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Table A.17 – Continued from previous page
State Tier 1 RPS Tier 2 RPS REC Eligible Location

VA
∗

(1) Solar, (2) wind power, (3)

geothermal energy, (4) hydro-

power, (5) wave, (6) tidal, (7)

biomass energy.

Electricity must be generated or

purchased in (1) Virginia or (2)

in the PJM service territory.

WV No RPS

End of long table.

Notes:
∗
States with voluntary RPS
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G Additional Figures and Tables

Table A.18: Impact of Pennsylvania Joining RGGI on Capacity Expansion

Base Case Central Case No RPS

Pennsylvania:
Natural Gas - 2022 (GW) 0.00 0.00 0.00

Natural Gas - 2023 to 2025 0.00 0.00 0.00

Natural Gas - 2026 0.00 0.00 0.00

Natural Gas - 2027 to 2029 0.00 0.00 0.00

Natural Gas - 2030 0.00 0.00 0.00

Wind - 2022 0.92 0.10 0.00

Wind - 2023 to 2025 0.47 0.16 0.00

Wind - 2026 0.00 0.00 0.00

Wind - 2027 to 2029 0.00 0.00 0.00

Wind - 2030 0.00 0.05 0.00

Solar - 2022 0.00 0.00 0.00

Solar - 2023 to 2025 0.00 0.00 0.00

Solar - 2026 0.00 0.00 0.00

Solar - 2027 to 2029 0.00 0.00 0.00

Solar - 2030 0.01 0.00 0.00

Rest of PJM:
Natural Gas - 2022 (GW) 0.00 0.00 0.00

Natural Gas - 2023 to 2025 0.00 0.00 0.00

Natural Gas - 2026 0.00 0.00 0.00

Natural Gas - 2027 to 2029 0.00 0.00 0.00

Natural Gas - 2030 0.00 0.00 0.00

Wind - 2022 0.32 0.72 0.18

Wind - 2023 to 2025 4.85 7.43 7.77

Wind - 2026 2.00 2.19 2.10

Wind - 2027 to 2029 2.18 2.26 2.45

Wind - 2030 0.94 0.50 0.66

Solar - 2022 0.15 0.19 0.18

Solar - 2023 to 2025 2.55 0.68 0.67

Solar - 2026 0.21 0.23 0.23

Solar - 2027 to 2029 0.18 0.14 0.14

Solar - 2030 0.08 0.03 0.05
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Table A.19: Impact of Pennsylvania Joining RGGI on Transmission

2022 2026 2030 Cumulative

Flow into East PA (2) from West PA (1) (1,000 GWh) 22.7 22.3 23.0 202.3

Change 2.2 3.8 5.2 35.7

Flow into Central RPJM (4) from West RPJM (5) 19.2 21.4 25.6 196.7

Change -8.7 -6.1 -5.8 -61.9

Total Cross-Border -69.9 -71.7 -73.3 -650.9

Change 38.4 41.6 50.6 398.1

Flow into East PA (2) from East RPJM (3) -50.5 -50.8 -50.9 -456.9

Change 1.3 0.2 0.5 3.6

Flow into East PA (2) from Central RPJM (4) -12.3 -12.5 -13.2 -114.8

Change 8.7 8.5 9.7 83.2

Flow into West PA (1) from West RPJM (5) -7.2 -8.5 -9.1 -79.3

Change 28.3 33.0 40.5 311.3

Congestion Price between East PA (2) and West PA (1) - Base Case ($/MWh) $ -0.47 $ -0.06 $ 0.02 $ -0.18

Congestion Price between East PA (2) and West PA (1) - Central Case ($/MWh) $ -0.31 $ 0.40 $ 0.92 $ 0.31

Change $ 0.16 $ 0.45 $ 0.90 $ 0.48

Congestion Price between Central RPJM (4) and West RPJM (5) - Base Case $ 0.59 $ 1.34 $ 2.27 $ 1.41

Congestion Price between Central RPJM (4) and West RPJM (5) - Central Case $ 0.04 $ 0.72 $ 1.39 $ 0.69

Change $ -0.55 $ -0.62 $ -0.88 $ -0.72

Congestion Price Cross Border - Base Case $ -2.76 $ -3.55 $ -4.50 $ -3.72

Congestion Price Cross Border - Central Case $ -1.27 $ -2.24 $ -2.04 $ -2.02

Change $ 1.50 $ 1.31 $ 2.46 $ 1.70

Congestion Price between East PA (2) and East RPJM (3) - Base Case $ -5.30 $ -8.11 $ -9.92 $ -8.18

Congestion Price between East PA (2) and East RPJM (3) - Central Case $ -2.61 $ -6.20 $ -5.94 $ -5.49

Change $ 2.69 $ 1.91 $ 3.98 $ 2.69

Congestion Price between East PA (2) and Central RPJM (4) - Base Case $ -2.02 $ -1.97 $ -2.92 $ -2.28

Congestion Price between East PA (2) and Central RPJM (4) - Central Case $ -0.77 $ -0.42 $ -0.32 $ -0.48

Change $ 1.25 $ 1.55 $ 2.60 $ 1.80

Congestion Price between West PA (1) and West RPJM (5) - Base Case $ -0.96 $ -0.57 $ -0.67 $ -0.70

Congestion Price between West PA (1) and West RPJM (5) - Central Case $ -0.42 $ -0.09 $ 0.15 $ -0.10

Change $ 0.54 $ 0.48 $ 0.81 $ 0.60
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