
1.  Introduction
Globally, the electric power system is increasingly stressed, witnessing higher demand and reduced capacity 
due to more frequent occurrence of extreme weather events under climate change (International Energy Agen-
cy, 2018; van Vliet et al., 2012; Yalew et al., 2020). The recent major blackouts in various parts of the United 
States, including California and Texas, are stark reminders of the high societal costs of not accounting for the 
climate-induced demand increase (Fuller, 2020; Penn, 2021). In the absence of more proactive approaches to-
wards anticipating demand shifts under climate change, frequent rolling blackouts could become the new norm, 
leaving millions of households without access to electricity and other electricity-dependent essential services 

Abstract  Soaring temperatures and increased occurrence of heatwaves have drastically increased air-
conditioning demand, a trend that will likely continue into the future. Yet, the impact of anthropogenic warming 
on household air conditioning is largely unaccounted for in the operation and planning of energy grids. Here, by 
leveraging the state-of-the-art in machine learning and climate model projections, we find substantial increases 
in future residential air conditioning demand across the U.S.—up to 8% with a range of 5%–8.5% (13% with a 
range of 11%–15%) after anthropogenic warming of 1.5°C (2.0°C) in global mean temperature. To offset this 
climate-induced demand, an increase in the efficiency of air conditioners by as much as 8% (±4.5%) compared 
to current levels is needed; without this daunting technological effort, we estimate that some states will face 
supply inadequacies of up to 75 million “household-days” (i.e., nearly half a month per average current 
household) without air conditioning in a 2.0°C warmer world. In the absence of effective climate mitigation 
and technological adaptation strategies, the U.S. will face substantial increases in air conditioning demand and, 
in the event of supply inadequacies, there is increased risk of leaving millions without access to space cooling 
during extreme temperatures.

Plain Language Summary  Climate change is leading to increased temperatures around the world. 
As temperatures rise, the demand for air conditioning increases accordingly, as people strive to keep cool. 
While the general pattern of projected changes is intuitive (i.e., higher temperatures lead to increased air 
conditioning use), the specific changes that will be experienced by households is not well understood. Here, 
we utilize a machine learning model to project changes to household-level air conditioning demand over the 
contiguous United States. Our results show significant increases to air conditioning demand in projected 
warming world of 1.5 and 2.0°C levels above pre-industrial ones. In particular, households are projected to 
experience 8% more air conditioning after surpassing the 1.5°C threshold and up to 13% more after the 2.0°C 
threshold, when compared to the baseline (2005–2019). We then discuss the implications of these projected 
changes on possible increase in air conditioner efficiency that would effectively counteract climate-induced 
increases. In the event that these climate-induced changes are not accounted for, we find that, in some states, 
the average household could face up to 14 days without air conditioning in a given summer in the 2.0°C warmer 
world. This will disproportionately impact marginalized communities that are especially vulnerable to heat-
related disasters and subsequent health impacts.
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such as water, sanitation, mobility, and communication, with significant public health implications (Mukherjee 
& Nateghi, 2019; van Vliet et al., 2012; Yalew et al., 2020).

Since the majority of the U.S. states are summer-peaking (i.e., the highest peak loads are observed during the 
summer), characterizing the climate-sensitivity of summer-time electricity demand has become an important 
pillar in energy adequacy planning (Maia-Silva et al., 2020). Within the residential sector, which is the most 
heterogeneous segment of the energy sector (Mukherjee & Nateghi, 2017, 2019), air conditioning represents a 
significant portion of the summer electricity use (Randazzo et al., 2020; US Energy Information Administra-
tion, 2018a). Given that over 90% of the U.S. households have air conditioning (US Energy Information Ad-
ministration, 2018b), the main driver of increased summer-time electricity use within the United States will be 
climate change (Mukherjee & Nateghi, 2019; Mukherjee et al., 2019; Raymond et al., 2019). While the global 
demand for cooling is projected to reach a three-fold increase by 2050, better characterizing and addressing the 
unprecedented increase in cooling demand are often skirted in the sustainability debates (Khosla et al., 2020).

Climate change will result in higher temperatures as well as increased likelihood of extreme heatwaves (Dosio 
et al., 2018; McGregor et al., 2015), both of which will lead to higher demand for air conditioning (Internation-
al Energy Agency, 2018). Within the international governance on climate change, there is a focus on limiting 
warming to 1.5°C or 2.0°C above pre-industrial levels (Intergovernemental Panel on Climate Change,  2018; 
UNFCC, 2015). A few recent studies have looked into the impact of missing these warming targets in the energy 
sectors, particularly from the demand-side (Auffhammer et al., 2017; Schaeffer et al., 2012; Yalew et al., 2020; 
Zhou et al., 2014). Most studies, however, often focus on the energy sector as a whole (Auffhammer et al., 2017; 
Maia-Silva et al., 2020; Mukhopadhyay & Nateghi, 2017) or consider only a single state (Alipour et al., 2019; 
Amato et al., 2005; Raymond et al., 2019).

Here, we provide a large-scale assessment and prediction of household-level air conditioning use under climate 
change scenarios across the contiguous United States. This is the first study, to our knowledge, that leverages 
publicly available datasets to evaluate and predict air conditioning use at the household level under future cli-
mate change scenarios, while also adopting a large spatial extent. Moreover, while previous work has focused on 
annual electricity consumption (Deschênes & Greenstone, 2011) or daily peak load (Auffhammer et al., 2017; 
Franco & Sanstad, 2008; Kumar et al., 2020; Wenz et al., 2017), the present study focuses on the summer-time 
air conditioning use as a whole. Finally, we provide information on the shifts in air conditioning demand after 
two key warming thresholds-1.5 and 2.0°C above pre-industrial levels. The focus on warming thresholds situates 
the study within the ongoing international discussions on climate change mitigation (Intergovernemental Panel 
on Climate Change, 2013, 2018), while also presenting high resolution results that are applicable at local levels.

The article is organized as follows. First, we provide an in-depth discussion of the related literature in Section 2. 
In Sections 3 and 4, we discuss the data and methodology used in this study. Then, in Section 5, we delve into the 
results and discussion, focusing on the model performance in the observational space, the model projections into 
the future, and various implications of those projections, including potential changes to air conditioner efficiency 
and impacts of extreme, unmitigated heat stress. Finally, we conclude the study in Section 6.

2.  Background Information Related to Impact of Climate Change on Electricity 
Consumption
There have been a number of studies focused on the climate sensitivity of electricity use, particularly as it pertains 
to rising temperatures and air conditioning demand. However, there are a number of gaps that still remain.

One such gap relates to the spatial scale of the study areas considered in the previous research. In particular, a 
number of studies focus on aggregated study areas, such as cities, states, or even entire countries. For example, 
Sailor and Pavlova (2003) investigated the impact of climate change on air conditioning demand at the city scale. 
In particular, the authors considered 12 cities across four U.S. states (Sailor & Muñoz, 1997). Other studies have 
considered impact of climate change on aggregated energy demands at state-level. Amato et al. (2005) focused 
on the state of Massachusetts, while Ruth and Lin (2006) evaluated climate impacts on energy demand within the 
state of Maryland. In a few recent studies, Mukherjee and Nateghi predicted the climate-sensitive portion of the 
residential and commercial electricity demand for the state of Florida (Mukherjee & Nateghi, 2017), as well as 
Ohio (Mukherjee & Nateghi, 2019). Similarly, Alipour et al. (2019) focused on the state of Texas. Going beyond 
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a single state, Mukherjee et al. (2019) investigated the climate-demand nexus for the residential and commercial 
electricity sectors across the top eight energy-intensive states in the U.S. Finally, Mirasgedis et al. (2007) project-
ed the electricity demand under climate change across the entire country of Greece. Overall, these studies focus 
on large-scale areas with aggregated electricity demand data. However, there is a need to evaluate and predict 
changes at higher resolutions, such as the household-level demand.

There are a few studies that emphasize household-level end-use energy demand changes, as household data can 
be difficult to obtain and is rarely publicly available. In cases where household-level end-use demand data can 
be obtained, the scale of the study is generally limited to a small geographic area. For example, Lam (1998) as-
sessed changes to household-level air conditioning use across Hong Kong. In a slightly larger study, Auffhammer 
and Aroonruengsawat  (2011) projected climate-induced changes to household electricity consumption within 
the state of California. Likewise, Nateghi and Mukherjee (2017) focused on households across the U.S. state of 
Indiana. These studies demonstrate the importance of conducting household-level studies, but there still remains 
a need to perform such studies at larger spatial extents.

Another gap within the literature relates to the temporal scale of the studies. Several studies, for example, have fo-
cused on the climate impacts to annual electricity consumption. Deschênes and Greenstone (2011), for instance, 
evaluated the relationship between daily temperatures and annual residential electricity consumption, which they 
then used to make projections under climate change scenarios. Other studies have considered daily time scales. 
Franco and Sanstad (2008) considered the relationship between temperature and daily peak electricity load to 
make future projections for locations within California. Similarly, Auffhammer et al. (2017) simulated the im-
pacts of climate change on total daily electricity consumption, as well as daily peak load. On a broader scale, 
Wenz et al. (2017) found significant increases to daily electricity consumption (total and peak) across European 
countries. Finally, Kumar et  al.  (2020) evaluated the impact of climate change on summer peak load across 
California. While peak load is a critical metric for managing the electric grid, understanding the climate change 
impacts at a larger time scale might be more beneficial for long-term planning. However, there is a lack of studies 
that evaluate changes at seasonal time scales. Evaluating electricity consumption at seasonal time scales is also 
beneficial for isolating specific end uses. For example, utilities interested in understanding changes in electricity 
consumed for heating will be primarily interested in the winter season. In this example, a study modeling annual 
peak load or even total load will not be as helpful as a seasonal study. Similarly, we focus on the summer season, 
as it is the peak period for air conditioning use within the United States. In addition to the summer season acting 
as the primary period of air conditioning use, it is also the season with the highest inadequacy risk, which may 
lead to cascading power outages in the absence of adequate operational planning (Mukherjee & Nateghi, 2019). 
Therefore, it especially important to understand the future changes to the system during the summer.

In addition, there is a significant variability in the focus of the studies related to climate change and electricity 
demand, mostly in terms of the types of end-use and/or end-users that are being analyzed. Some studies fo-
cus on specific end-uses or users, while other studies focus on various electricity sectors. For example, Zhou 
et al. (2014) present a study on the impact of climate change on building energy consumption across the U.S. On 
the other hand, Mukherjee and Nateghi (2017) evaluate the climate sensitivity of the residential and commercial 
sectors, while Maia-Silva et al.  (2020) focus solely on the residential sector. Finally, a recent study by Yalew 
et al. (2020) assessed the impact of climate change on the energy sector as a whole. Given that the residential 
sector has been shown to be the most sensitive to changes in climate (Mukherjee & Nateghi, 2017; Mukherjee 
et al., 2019; Obringer, Mukherjee, & Nateghi, 2020), the present study focuses on the residential sector, as well 
as the specific end-use of air conditioning.

Another gap that exists in the literature is related to adequate modeling of the complex, nonlinear relation-
ships between energy demand and climate change. The majority of the studies in literature have leveraged par-
ametric, linear models while modeling the climate sensitivity of electricity consumption. For example, Amato 
et  al.  (2005) used linear regression to quantify the relationship between climate and electricity consumption. 
Similarly, Mirasgedis et al. (2007) implemented a series of multiple linear regression models to determine the 
impact of climate change on electricity consumption in Greece. To model the shifts in peak load under climate 
climate, Auffhammer et al. (2017) also leveraged multiple linear regression. However, recent work has found that 
the relationship between the climate and electricity demand is nonlinear, and is best represented by more com-
plex, non-parametric models (Alipour et al., 2019; Mukherjee & Nateghi, 2017; Mukherjee et al., 2019). Here, 
we build off previous work to implement a state-of-the-art machine learning algorithm to model the impact of 
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climate change on household air conditioning demand. To the best of our knowledge, this is the first time that 
machine learning algorithms are being leveraged to predict the household-level air conditioning demand under 
climate change scenarios for the contiguous United States.

To summarize, there have been a number of studies relating climate change to electricity demand. However, 
these studies often rely on aggregated data at state or regional levels, as well as focus on daily or annual time 
steps. Moreover, many studies focus on various sectors of the energy system, rather than specific end-uses. Ad-
ditionally, most of the previous studies assume that the relationship between electricity demand and climate is 
linear, which often times does not hold good. This may lead to gross underestimation of the predicted demand. 
Therefore, this study seeks to fill these gaps by (a) focusing on the most climate-sensitive end user, that is, res-
idential households, (b) considering the entire contiguous United States, (c) emphasizing changes based on the 
summer season, rather than daily or annual, (d) evaluating and predicting changes specifically in air conditioning 
as an end-use, rather than a whole sector, and (e) most importantly, accounting for the nonlinearities in climate 
and electricity demand relationships by modeling the nexus using a non-parametric Bayesian learning algorithm.

3.  Data Collection, Pre-Processing and Aggregation
In this study, three main types of data were collected: (a) electricity consumption data; (b) observational climate 
data; and (c) projected climate data.

3.1.  Electricity Consumption Data

The electricity consumption data collected for this study were of two types: (a) domain-level residential electric-
ity consumption data; and (b) household-level residential electricity consumption data.

The domain-level residential electricity consumption data was collected from the U.S. Energy Information Ad-
ministration (EIA). In particular, state-level residential energy consumption data was obtained from the EIA-
861M form (US Energy Information Administration, 2019). The electricity sales data across the U.S. was con-
sidered as the response variable for the initial analysis. The data was collected on a monthly basis from 2005 to 
2019; however, only the summer months (June–September) were used in the final analysis.

Data on household-level electricity consumption for air conditioning was collected at the household-level from 
the 2009 Residential Energy Consumption Survey (RECS) (US Energy Information Administration, 2018d). This 
data set contains granular data on a “statistically representative” sample of households based on demographics 
within each state across the U.S., with the exception of a few states, which are grouped together to form domains. 
In these cases, the domains are made up of states that are lower in population with similar energy demand pat-
terns. For example, the states of Indiana and Ohio are grouped together to form one domain within the RECS 
data set. Since the RECS data is aggregated into domains, the total electricity consumption data was aggregated 
to match the domains. It is important to note that while the EIA has recently published data from the 2015 RECS 
survey, the sample size was significantly smaller in 2015 when compared to 2009 (US Energy Information Ad-
ministration, 2018c). The smaller sample size not only resulted in higher standard errors, but also was drawn 
from different sampling units than previous studies (US Energy Information Administration, 2018c). In order to 
minimize standard errors in the data, as well as ensure a large spatial extent (i.e., the contiguous United States), 
we decided to use the 2009 survey. We considered all 27 domains in the 2009 survey, which are listed in Table 
S1 in Supporting Information S1.

3.2.  Observational Climate Data

The observed climate data was collected from the North American Regional Reanalysis (NARR) (Mesinger 
et al., 2006), which served as the predictor climate variables in the study. In particular, we considered seven key 
climate indicators: air temperature (TAS), dew point temperature (TDEW), wet bulb temperature (WBA or Tw), 
simplified wet bulb global temperature (sWBGT), discomfort index (DI), heat index (HIA), and humidity index 
(Humidex), which have been shown to influence summer electricity demand (Maia-Silva et al., 2020). All of the 
included variables, with the exception of air temperature, consider the joint impacts of temperature and humid-
ity. Details regarding these measures and their calculations can be found in Buzan et al. (2015) and Maia-Silva 
et al. (2020).
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3.3.  Projected Climate Data

The projected climate data were collected from five CMIP5 general circulation models (GCMs): the Geophysical 
Fluid Dynamics Laboratory - Earth Systems Model (GFDL-ESM2M), the Hadley Centre Global Environment 
Model (HadGEM2-ES), the Institut Pierre Simon Laplace Model (IPSL-CM5A-LR), the Model for Interdisci-
plinary Research on Climate - Earth Systems Model (MIROC-ESM-CHEM), and the Norwegian Earth System 
Model (NorESM1-M). These models were carefully selected after a large community wide study—the Inter-Sec-
toral Impact Model Intercomparison Project (Warszawski et al., 2014). These five models have been shown to 
cover the majority of the uncertainty range present across the entire suite of CMIP5 models (McSweeney & 
Jones 2016; Samaniego et al., 2018). This allows for a more efficient modeling process without significant loss 
of variation in key climate variables. Additionally, using these five models increases the cross-sector compara-
bility of our results, as these models have been used in a number of studies across different regions and sectors 
(see Jacob et al. (2018), Samaniego et al. (2018), and Obringer, Kumar, and Nateghi (2020) for examples). The 
projection data from the RCP 8.5 emission scenario was included in this study. This scenario represents a pro-
jection of 8.5 Wm−2 in end-of-century radiative forcing and corresponds to the highest projected warming. This 
scenario is often labeled as the worst case scenario, which will result from unchecked emissions and unmitigated 
warming. The results presented in this text, therefore, represent the possible future in which there is no large-scale 
climate action and warming is allowed to continue unmitigated. It should be noted, however, that although this 
is the worst case scenario, it is not entirely unrealistic. Thus, the results can be interpreted as a potential future 
and used to build a case for limiting warming and reducing emissions. The climate data were obtained from the 
Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) (Warszawski et al., 2014), which has been used 
in several climate impact studies, including the recent reports of the Intergovernmental Panel on Climate Change 
(IPCC) (Intergovernemental Panel on Climate Change, 2013, 2018). The data, which included the seven climate 
variables considered in this study, was extracted for each domain at a monthly time scale.

3.4.  Response Variable Pre-Processing

In order to isolate the climate-sensitive portion of the electricity demand, we implemented a trend adjustment 
process to limit the impact of non-climatic factors, such as technological advancements or demographic shifts on 
the energy consumption data (Sailor & Muñoz, 1997). The trend adjustment process consists of calculating an ad-
justment factor for each year in the study, then dividing the monthly electricity use by the adjustment factor. This 
method has been used in a number of previous studies that focused on evaluating the impact of climate change 
on the energy sector (Alipour et al., 2019; Mukherjee & Nateghi, 2017, 2019; Obringer et al., 2019; Obringer, 
Mukherjee, & Nateghi, 2020). This method effectively removes the trends associated with changing technology 
and socioeconomic conditions, allowing us to focus on predicting the climate-sensitive portion of the demand. 
More information on this method can be found in the Supporting Information S1.

To obtain household-level estimates of air conditioning, we used the RECS data provided by EIA, as discussed 
in Section 3.1. The households in this data set are considered to be “representative”. A representative sample in 
a given domain refers to the fact that the sample population is representative of the actual population within each 
domain (US Energy Information Administration, 2018d). In other words, as part of the RECS methodology, EIA 
surveyed a representative sample of households to determine various end-uses of electricity, including air condi-
tioning. In the 2009 survey, this representative sample included 12,083 households across the country (US Ener-
gy Information Administration, 2018d). In this study, we used this empirical sample to generate larger sampling 
distributions, a process which is discussed in greater detail in the Methods section. These sampling distributions 
were ultimately used to obtain the average amount of electricity used for air conditioning at a household level 
across the 27 RECS domains.

3.5.  Predictor Variables Pre-Processing

Similar to the electricity data, the climate observations were collected on a daily basis from 2005 to 2019 and 
aggregated to match the temporal and spatial scales of the electricity data. In the temporal dimension, daily data 
were averaged to get monthly means of the aforementioned climatic variables. This was performed for both the 
observational data from NARR and the projected data from the CMIP5 models. Spatially, the data were initially 
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obtained as 32 km (NARR) and 0.5° (CMIP5) grid-level datasets, then averaged to obtain mean values over each 
domain.

3.6.  Final Data Set

Through the processes discussed above, our final data set included several variables. There is the response varia-
ble—electricity consumption, which underwent the trend adjustment process (Section 3.4), as well as the predic-
tors, which are the various climate variables and indices. These predictor variables were aggregated to match the 
spatial and temporal scale of the electricity consumption data (Section 3.5) and were obtained in both the obser-
vational and future spaces. It is important to note the difference between these two spaces, as the observational 
data was first used to train the model (Section 4.1), while the future data was used within the projection analysis 
(Section 4.2). The variables are summarized in Table 1.

4.  Methodology
This study leverages a data-driven technique to first predict household air conditioning use, then project the future 
demand under climate change scenarios. In particular, the modeling framework proposed in this study consists 
of three main steps: (a) data collection, aggregation and preprocessing; (b) model development, including model 
training and testing; and, (c) model projections. These steps are depicted in Figure 1. The first step—data collec-
tion, preprocessing and aggregation—has been described in Section 3. In the second step—model development 
(discussed in Section 4.1)—the proposed algorithm Bayesian Additive Regression Trees (BART) was applied 
within a cross validation loop. Finally, in the third step—model projections—climate projection analysis (dis-
cussed in Section 4.2) and the efficiency assessment of air conditioners (discussed in Section 4.3) were conduct-
ed. This framework is generalized enough that can be applied to any study region, contingent on the availability 
of data.

4.1.  Model Development

The model development performed in this study is based on a state-of-the-art statistical learning algorithm, 
known as BART (Chipman et al., 2010). Statistical learning theory encompasses a wide variety of algorithms 
used to either predict certain outcomes or discern patterns in the data (Hastie et al., 2009). In this study, the 
BART algorithm is used to predict the household-level cooling load across the United States because it has been 
found to best capture the nonlinear relationships between the energy demand and climate, and has been used by 
a number of studies focused on predicting energy use (Alipour et al., 2019; Mukhopadhyay & Nateghi, 2017; 
Raymond et al., 2019). However, this is the first study, to our knowledge, that employs this algorithm to project 
household-level energy use into the future, under climate change scenarios. Below we discuss the algorithm in 
greater depth, as well as the cross validation scheme used to test the model performance.

Type Name Units Source

Response Monthly Household Air Conditioning Consumption kWh EIA

Predictor Air Temperature (TAS) °C NARR

Dew Point Temperature (TDEW) °C NARR

Wet Bulb Temperature (WBA) °C NARR

Simplified Wet Bulb Global Temperature (sWBGT) °C NARR

Discomfort Index (DI) — NARR

Heat Index (HIA) — NARR

Humidity Index (HUMIDEX) — NARR

Note. The variables used in the projection analysis were the same, but were obtained from the CMIP5 database, rather than 
the observational NARR database.

Table 1 
Variables Included in Final Data Set
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4.1.1.  Bayesian Additive Regression Trees: Algorithm Specification

In the model development stage, state-level electricity consumption data obtained from the EIA (US Energy 
Information Administration, 2019) and monthly climate data collected from the North American Regional Rea-
nalysis (Mesinger et al., 2006) were used to develop a predictive model based on the BART algorithm (Chipman 
et al., 2010). The model was developed for the entire year and the electricity demand for the summer months were 
extracted later, based on the study scope. The BART algorithm is a sum-of-trees model that aggregates many trees 
to build a predictive model (Chipman et al., 2010). The algorithm is represented mathematically in Equation 1.

𝑌𝑌 =

𝑚𝑚
∑

𝑗𝑗=1

𝑔𝑔(𝑋𝑋; 𝑇𝑇𝑗𝑗,𝑀𝑀𝑗𝑗) + 𝜖𝜖� (1)

here, g(X; Tj, Mj) is a function that assigns the parameter M of tree T to the predictor variable array X across all m 
trees. ϵ represents the irreducible error of the model (ϵ ∼ (N, σ2)) (Hastie et al., 2009).

4.1.2.  Cross Validation

To evaluate the generalization performance of the model, a 5-fold cross-validation technique was implemented. In 
this technique, 20% of the data is withheld from training the model and used later to test predictive accuracy of the 
model, while the remaining 80% of the data is used for training the model (Hastie et al., 2009). This process is it-
erative, in that each iteration uses a different 20% of the data as a test set. Ultimately, this process helps balancing 
the bias-variance trade-off that is common to evaluate the generalization performance of the statistical learning 
models (Hastie et al., 2009). We applied the cross-validation scheme once over each domain. In other words, data 
from each domain was split into fifths, with each fifth being used as a test set once during the model run.

4.1.3.  Downscaling Projected Domain-Specific Electricity Consumption to Statistically Representative 
Households

To downscale aggregate loads and extract household-level cooling demand, we generated sampling distributions 
of air conditioning use for statistically representative households in each domain. This was done by using the 
EIA RECS data set, which provides data from a representative sample of households across 27 domains in the 
contiguous United States (US Energy Information Administration, 2018d). In particular, the RECS data set con-
tains information on the fraction of electricity that is used for space-cooling within a statistically representative 

Figure 1.  Model framework used to project household-level air conditioning demand across the United States.
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household. To generate a sampling distribution, we used the generalization of the central limit theorem (Gned-
enko & Kolmogorov, 1954; Voit, 2005) as the basis for fitting the empirical demand data to a normal distri-
bution. Then, using the parameters of this fitted normal distribution, we generated a large sample distribution 
(n = 1,000). This generated sampling distribution was then multiplied by the aggregate electricity demand in a 
region to get an estimate of the household-level demand. Additional details on this process can be found in the 
Supporting Information S1. It is important to note that this methodology assumes there will be no significant 
changes to energy consumption, such as technological advances or behavioral shifts. It is important to clarify, 
therefore, that the results presented in this study will demonstrate the future energy demand, should everything 
remain the same except the climate. This method has been successfully used in previous studies aimed to project 
the household-level cooling and heating demand in a region (Nateghi & Mukherjee, 2017; Raymond et al., 2019).

4.2.  Climate Projection Analysis

The goal of the projection analysis was to estimate the future change in electricity demand for air conditioning 
during the summer months due to a warming climate. The analysis was performed by following a methodol-
ogy laid out in a series of studies in the domain of climate change impact on electricity demand (Maia-Silva 
et al., 2020; Obringer, Kumar, & Nateghi, 2020), as well as the global recommendations set forth by the IPCC 
(Intergovernemental Panel on Climate Change, 2018). In this study, two temperature thresholds were selected: 
1.5°C and 2.0°C above pre-industrial levels. Then, based on the historical reference period (1971–2000), the 
corresponding 30-year period when these thresholds will be reached was identified (James et al., 2017). Spe-
cifically, the global temperature was calculated for each GCM as a 30-year running mean. Then, by comparing 
those 30-year means to the reference period (1971–2000), the time periods corresponding to the temperature 
thresholds (1.5 and 2.0°C above pre-industrial levels) were selected as our future periods. The future climate 
variables were then extracted from each GCM within the future periods to represent the climatic conditions in 
a 1.5 and 2.0°C warmer world. Notably, this approach has been used by several recent climate change impact 
assessment studies (Jacob et al., 2018; Obringer, Kumar, & Nateghi, 2020; Samaniego et al., 2018). In this study, 
the 30-year periods were identified for five GCMs, however, only the last 15 years of each period were consid-
ered for the projection analysis. This selection was made to ensure the future periods did not overlap with the 
baseline period (2005–2019). In other words, there are a few GCMs that predicted the 1.5°C threshold would be 
surpassed before 2020, which would lead to a projection analysis that overlapped with the baseline. Selecting the 
last 15 years of each period, allowed us to avoid this situation. Additional details on this process can be found in 
the Supporting Information S1.

4.3.  Efficiency Calculation

In addition to the projection analysis, we evaluated the hypothetical changes to air conditioner efficiency that 
would be needed to counteract the increases due to climate change. The efficiency was calculated using a meth-
od developed by McNeil and Letschert (2008). The first step was to calculate the consumption (in kWh) of an 
average air conditioning unit (unit energy consumption; UEC) in each domain. This calculation (Equation 2) is 
based on income and cooling degree-days (CDD). The CDD data were obtained from the RECS data set for each 
domain (US Energy Information Administration, 2018d).

𝑈𝑈𝑈𝑈𝑈𝑈 = 0.345 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1.44 × 𝐶𝐶𝐶𝐶𝐶𝐶 − 823� (2)

Here, income is considered to be the state gross domestic product (GSP) adjusted for the cost of living. Using the 
UEC, the baseline efficiency was calculated using Equation 3, where the demand is the electricity used for air 
conditioning by the statistically representative household in each domain.

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑈𝑈𝑈𝑈𝑈𝑈
� (3)

We then calculated the future efficiency that would be needed to maintain the current UEC, as shown in Equa-
tion 4. The difference between the two values (baseline and future efficiency) was considered to be the amount 
of efficiency improvements needed to counteract the increase in electricity consumption for air conditioning.

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓

𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐

� (4)
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5.  Results & Discussion
In this section, we will discuss the results of the model performance for each of the 27 US domains (discussed in 
Section 5.1), followed by the results of projection of air conditioning demand under the extreme warming scenar-
io (RCP 8.5), which is discussed in Section 5.2.

5.1.  Model Performance

To conduct this analysis, we leverage a state-of-the-art machine learning approach, grounded in statistical learn-
ing theory (see Section 4 for more information), to predict the summer air conditioning demand (in kWh) for 
a statistically representative household across the contiguous United States. In particular, we consider the 27 
domains defined by the US Energy Information Administration Residential Energy Consumption Survey (US 
Energy Information Administration, 2018d).

We first train a predictive model using an observational data set during the “reference period” of 2005–2019. 
This initial model predicts the observed electricity consumption for air conditioning based on several key climatic 
indicators established in previous research (Maia-Silva et al., 2020), including dew point temperature, wet bulb 
temperature, heat index, and humidity index (see Section 3 and Figure 2). We train each domain separately to 
account for the domain-specific attributes, such as climate and consumption patterns. As such, different vari-
ables may be more or less important in different domains. The influence of predictors within the different do-
mains is reported in Table S1 in Supporting Information S1, which lists the top three predictors in each domain. 

Figure 2.  (a) A schematic of the climatic variables and indices considered in building the modeling framework. Note that the gradients depict the basic trends 
in the input data and are not meant to show specific values. See Table S2 in Supporting Information S1 for further details on these input variables. (b) Mean 
summer electricity used for air conditioning per household across U.S. domains, labeled with domain numbers (see Methods). (c) The predicted electricity use for 
air conditioning plotted against the actual values, colored to show over- and under-prediction (red and blue, respectively). The inset plot shows the out-of-sample 
normalized root mean squared error (OOS NRMSE) as a heat map with darker colors representing larger errors.
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Additionally, we perform rigorous cross-validation to ensure the generalization performance of the predictive 
model and to minimize over-fitting and other model biases.

The model performs well in the majority of the domains (see Figure 2), in terms of both model fit and predictive 
accuracy. Figure 2c shows the observed versus predictive kWh electricity used per household, demonstrating the 
ability of the model to fit the data across each domain (see Figure 2b for domain location information). In fact, 
the majority of the domains are slightly under-predicted, suggesting that the model is predicting lower demand 
than the observations. Of the domains that were over-predicted (i.e., the model predicts higher demand than the 
observations), the majority are in the Northeast (Massachusetts, New York, and New Jersey) or Northwest (Wash-
ington and Oregon). Historically, these domains have been winter-peaking in terms of electricity (Maia-Silva 
et al., 2020), meaning the electricity use peaks in winter due to space heating, while space cooling in summer re-
mains relatively rare. It is likely that these historical conditions, which have led many households to simply forego 
the installation of air conditioners, are leading to lower air conditioning use, even in the face of more extreme 
climatic conditions. Hence, our model, which is based on the climatic conditions, predicts higher air conditioning 
use than what we observe in these regions. Additionally, the out-of-sample predictive error (NRMSE) is relatively 
low in most domains (Figure 2c), indicating the reliability and predictive accuracy of the developed model. In 
particular, our model has a predictive error that is less than 10% (NRMSE 𝐴𝐴 𝐴 0.1) across all domains. Given the 
relatively low errors in the observation space, this model was then used to project the climate-sensitive portion of 
air conditioning demand into the future, which will be discussed in the following section.

5.2.  Projections Under Future Climate Change

The future scenarios are driven by seven key climate variables (see Figure 2a and Section 3) obtained from five 
bias-corrected Coupled Model Intercomparison Project Phase 5 (CMIP5) projections (Warszawski et al., 2014). 
We consider the most extreme warming scenario (RCP8.5) to project the shifts in air conditioning use due to 
unmitigated anthropogenic warming.

Using the developed model trained with the “reference period” (i.e., 2005–2019) data, we project the climate 
sensitive portion of air conditioning demand into the future following two global mean temperature warming 
levels of 1.5°C and 2.0°C above a pre-industrial level (Intergovernemental Panel on Climate Change, 2018; In-
tergovernemental Panel on Climate Change, 2013). We use a time-sampling approach to extract future 15-year 
periods in which each GCM surpassed and average global temperature of 1.5°and 2.0°C above pre-industrial 
levels (James et al., 2017). Through this approach, therefore, we had five 15-year slices per temperature threshold 
that were used to generate the average electricity used for air conditioning due to climate change. This method has 
been used previously in the literature as a method to characterize climate impacts at different temperature levels 
(Jacob et al., 2018; James et al., 2017; Obringer, Kumar, & Nateghi, 2020; Samaniego et al., 2018). To remove 
any bias induced by conducting comparisons between GCM-derived projections and observed values, we first 
use the ensemble of GCM data to derive the electricity demand during the reference period (see Figure 3a and 
Figure S3 in Supporting Information S1). We then use this data to project the future electricity demand under cli-
mate change. The percent change between the projected electricity demand under the two temperature thresholds 
scenario and the baseline demand, given an ensemble of five GCMs, are shown in Figure 3. We can also compare 
the GCM-derived data during the reference period (Figure 3a) to the observational data (Figure 2b) for additional 
evaluations of accuracy. For further information on this practice, see Obringer, Kumar, and Nateghi (2020) and 
Maia-Silva et al. (2020). As the two figures show, the GCM-derived data accurately captures the spatial patterns 
of the electricity use for air conditioning across the study area. See Figure S2 in Supporting Information S1 for 
additional comparison between the observational data obtained from NARR and the GCM-derived climate varia-
bles. Going forward, we use the GCM-derived baseline data set to evaluate the shifts in air conditioning demand 
following 1.5 and 2.0°C of anthropogenic warming. In terms of planning, the 1.5°C threshold is expected to be 
reached around 2030, while the 2.0°C threshold is likely to be crossed around 2050 (Intergovernemental Panel 
on Climate Change, 2018). The associated time-frames of these warming levels also match the commonly used 
planning horizon in energy systems, underscoring the relevance of this study's insights for integrated adequacy 
planning in the energy sector (US Energy Information Administration, 2020).

As shown in Figure 3, the model projects increases in household electricity demand for air conditioning use across 
the 27 domains, although there is some variability in the magnitudes. For example, the increase in household 
electricity consumption for air conditioning is much more pronounced in Southern and Southwestern parts of the 
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country. In fact, some of the domains with highest per household electricity use are projected to experience more 
extreme changes under the climate change scenarios. For example, in Arizona (AZ), the use of air conditioning is 
projected to increase by 6% with a range of 4%–6.5% (see Figure 4) after 1.5°C of warming. This increase repre-
sents the projected increase of about 30 kWh per household per month, just for air conditioning use in response 
to climate change effects. If every household in Arizona were to experience this increase (considering the current 
average conditions of four persons per household and a population of 7.279 million), there would be an increase 
in electricity demand by about 54.5 GWh (54.5 million kWh) per month in the summer on average—only for air 
conditioning. If the population continues to increase, as is likely, this value will be much higher. Furthermore, if 
global warming exceeds 2.0°C, the change will increase to 10% (with a range of 7%–11%) over the baseline (Fig-
ure 3), further increasing the total electricity demand. However, this shift in demand is not so intense across the 
entire country. For example, in Washington (WA) and Oregon (OR), the model projects a slight increase (1%–2% 
above the baseline). Since the summer electricity use in these states is not that sensitive to climate (Maia-Silva 

Figure 3.  (a) Results of the model projections for each study domain (see Methods) with the overlaying bars representing the median changes in projected demands at 
two warming level thresholds-1.5°C (blue) and 2.0°C (red), relative to the baseline values. The background shading indicates the GCM-derived baseline consumption 
(kWh/household) in each domain over the period 2005–2019. (b) Differences in kWh consumed for air conditioning in each domain between the baseline and 1.5°C 
scenario and the 1.5 and 2.0°C scenarios.
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et al., 2020), it is not surprising that our model projects small changes. Nonetheless, in the majority of domains, 
our model indicates significant increases in household electricity demand for air conditioning, particularly after 
surpassing a 2.0°C change in global temperature.

In some parts of the country, the 0.5°C increase in global temperature (i.e., from 1.5°C to 2.0°C) could double or, 
in some cases, triple the increase in climate-driven household electricity demand for air conditioning (Figure 3a). 
For example, in Indiana and Ohio (IN and OH, respectively), there is a projected 4% (range = 3.5%–9%) increase 
in electricity use for air conditioning after 1.5°C of warming. This change rises to over 12% (range = 11%–14%) 
after 2.0°C. This increase in climate-driven electricity demand for air conditioning use, which amounts to over 
52.5 GWh, could put serious strain on the energy grid if the utilities are not prepared for such rapid increases. 
There are similar results across the rest of the Midwestern region, with Illinois (IL), Michigan (MI), and Wis-
consin (WI) projected to experience at least twice as large of an increase in the air conditioning demand after the 
2.0°C threshold as after the 1.5°C threshold.

5.2.1.  Uncertainty in Projected Air Conditioning Use

The results presented in Figure  3 represent the median values across the projections that were derived from 
the five GCMs used in this study. Due to the differences in these GCMs, there is some uncertainty in the final 
results. Figure 4 shows this uncertainty across the 27 domains for each temperature threshold. In particular, the 
figure shows the median value (as does Figure 3) and the 20th and 80th percentiles of the projected change to 
household-level air conditioning use (see Figure S4 in Supporting Information S1 for the standard deviation). In 
particular, the figure shows that the percent increase is consistently higher after 2.0°C of warming that it is after 
just 1.5°C of warming. This is expected, as most regions will experience more extreme increases in temperature 
under the former threshold. However, the uncertainty is often also larger after surpassing the 2.0°C threshold. 
This is likely due to the uncertainty within the GCMs, which becomes larger towards the end of the century (In-
tergovernemental Panel on Climate Change, 2013).

That being said, it is likely that world will cross the 1.5°C threshold within a couple decades (Intergovernemental 
Panel on Climate Change, 2013; Jacob et al., 2018), if current trajectories persist. As such, focusing on the im-
pacts of reaching 2.0°C of warming may be more beneficial from a practical standpoint. Going forward, we will 
present some of the implications of surpassing a global temperature of 2.0°C above the pre-industrial levels (the 
companion results for the 1.5°C warmer world are presented in Figure S1 in Supporting Information S1).

5.3.  Required Efficiency Improvements to Offset Increased Demand Due To Anthropogenic Warming

Our results indicate significant increases in air conditioning use at the household level following the 2.0°C warm-
ing level threshold (Figures 3 and 4). It may be possible to offset these increases in electricity demand for air 

Figure 4.  Percent change in electricity use for air conditioning after surpassing 1.5°C and 2.0°C of warming above pre-
industrial levels. The colored bars show the median value, while the error bars show the the 20th and 80th percentiles of the 
different projections obtained from the 5 GCMs considered in the study.
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conditioning use by improving the efficiency of the air conditioners being used (i.e., on a technological level). 
Efficiency improvements can lead to a significant reduction in total electricity use, even if there are no behavioral 
changes (International Energy Agency, 2018; Reyna & Chester, 2017). In other words, one can think of efficiency 
improvements in air conditioning units as a potential route towards offsetting the climate-driven increases dis-
cussed above, thus minimizing the supply inadequacy risk and saving consumers money.

The efficiency of U.S. home appliances has increased rapidly over the last several years, enhancing the energy 
security in the U.S. In a 2017 scenario-based study, Reyna and Chester (Reyna & Chester, 2017) found that while 
implementing efficiency measures would not fully offset the future increase in electricity demand, the more 
aggressive policies significantly reduced energy demand, compared to a scenario with no efficiency measures 
(Reyna & Chester, 2017). Similarly, according to the International Energy Agency increasing the efficiency of air 
conditioners would reduce the total cooling load by 45% compared to the baseline scenario (International Energy 
Agency, 2018). These studies still suggest that there will be an increase in the total consumption. However, if the 
goal is to offset the climate impacts, further improvements to efficiency will be necessary.

Here, we estimate the efficiency improvements that would be necessary to offset the demand increases caused 
by climate change. Using the method described by McNeil and Letschert  (2008), we calculate the efficiency 
that would be needed to counterbalance the increases in demand following the 2.0°C temperature threshold (the 
results from the 1.5°C temperature threshold can be found in Figure S3 in Supporting Information S1; see Sec-
tion 4.3 for more details on the methods). We find that in most domains, a 1%–8% improvement in air conditioner 
efficiency is needed to offset the increase in household demand (Figure 5). Specifically, some states such as Ar-
kansas (AR), Louisiana (LA), and Oklahoma (OK) are projected to need close to a 8% improvement in efficiency 
to maintain the status quo in terms of the electricity supply. It is important to note that these are the efficiency 
improvements needed to counteract the shifts in electricity demand only induced by climate change. To account 
for other factors that also influence demand (e.g., population growth, socioeconomic variables, etc.) additional 
efficiency gains will be necessary in order to effectively offset the demand increases. While estimating these 
additional efficiency gains are of critical importance for utilities and policymakers to ensure supply adequacy, it 
falls outside the scope of this study.

The efficiency improvements outlined in Figure 5 may be achievable in terms of technology. There has been 
an immense improvement of the equipment efficiency over the past several decades, but what accelerates such 
improvements is effective policy design and enforcement (Reyna & Chester, 2017). In California, for example, 
the government has enacted strict efficiency requirements for a number of appliances, including air conditioners 
(Reyna & Chester, 2017). These policies have led to manufacturers working towards improving efficiency of their 
products, so as to avoid losing out on the Californian market. Consequently, our results indicate that California 
needs less improvement to efficiency in order to counterbalance the climate-induced changes (see Figure 5).

5.4.  Implications of Not Enacting Technological Mitigation Efforts

If utilities fail to proactively manage the supply adequacy to meet the rising demand, rolling outages during 
extreme heat events could become more frequent (van Vliet et al., 2012; Yalew et al., 2020). We estimate the 
“household-days” (Figure 5) as the total days without air conditioning experienced by the average household 
within a domain in a given summer after surpassing the temperature threshold. This measure is calculated by 
multiplying the average number of days an average household would be without air conditioning by the total num-
ber of households under the 2.0°C warmer world (see Figure S1 in Supporting Information S1 for results from a 
1.5°C warmer world). In states like Oregon (OR) and Washington (WA), which are not expected to see extreme 
increases in air conditioning demand, this metric is relatively low (5.8 million household-days, or about one day 
per household). However, states such as Indiana (IN) and Ohio (OH) could experience 76 million household-days 
without air conditioning in a given summer season (about 12 days per household).

While the household-days metric is estimated for the average household in different domains, the burden will 
not be equally felt across all households. Previous work has shown that low income households bear the brunt 
of extreme heat events within cities (Khosla et  al.,  2020; Sanchez-Guevara et  al.,  2019), making them more 
vulnerable to climate-induced temperature increases and subsequent electricity outages and blackouts (Khosla 
et al., 2020; Kumar et al., 2020). This higher vulnerability arises often due to a number of factors—from inferior 
housing structures and residing in areas with higher urban heat island effects to the inability to afford increasing 
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electricity bills (Drehobl & Ross, 2016; Graff & Carley, 2020; Sánchez-Guevara et al., 2017, 2019). In the light 
of the vulnerability among marginalized communities, we estimate the impact of inadequate access to cooling en-
ergy in low income households based on the recent census reports (Kaiser Family Foundation, 2020) (Figure 5b). 
For example, Indiana (IN), Ohio (OH), and Texas (TX) are projected to experience high household-days (over 
85 million), and have some of the highest proportions of people living in poverty (i.e., below 200% of the U.S. 
poverty line) (Kaiser Family Foundation, 2020). Thus, should the utilities be unable to meet demand, the popu-
lation as a whole may not have access to air conditioning. This loss in air conditioning, however, is more likely 
to negatively impact marginalized communities due to the vulnerabilities associated with poorer housing, urban 
heat island effect, and lack of access to other cooling infrastructures (e.g., pools) (Sanchez-Guevara et al., 2019).

Figure 5.  (a) In the background, the map shows the necessary improvements to air conditioner efficiency (%) to offset the increased median demand projected under 
the 2.0°C warmer climate. This shading is accompanied by a black number indicating the necessary efficiency improvement. In the foreground, there are pie charts–
with their sizes representing the total household-days without air conditioning that a domain may face if unable to provide an electricity supply that meets the increased 
demand. The pie chart is further split between the number of household-days experienced by those that are in poverty (i.e., below 200% of the poverty line - shown in 
yellow) (Kaiser Family Foundation, 2020) and those that are not (in blue). The accompanying numbers are in the millions of household-days. (b) Bar chart showing 
the total number of household-days without air conditioning per summer in each domain, with the average days per household (HDD) written above each bar. The 
accompanying results for the 1.5°C warmer world are presented in Figure S1 in Supporting Information S1.
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That being said, this analysis focused on the impact of living in a 2.0°C warmer world. Should society succeed in 
limiting global warming to 1.5°C, it is likely that the aforementioned impacts will be lessened. For example, in a 
1.5°C warmer world, air conditioner efficiency would only need to be improved by 5% in some states (see Figure 
S1 in Supporting Information S1), a 3% reduction from the 2.0°C analysis. In the event of supply inadequacies, a 
1.5°C warmer world would likely leave households without air conditioning up to 8 days in a given summer (Fig-
ure S1 in Supporting Information S1), nearly half of what may happen in a 2.0°C warmer world. This reduction 
in negative impacts would not only help electricity utilities to cope with the shifting demand patterns, but would 
also limit the effects of climate change felt at the household level, including increased vulnerability to heat stress.

5.5.  Study Limitations and Opportunities for Future Work

There were a few limitations in this study. The first of which is the use of domain-wide mean values within the 
climate data. There has been previous work using population-weighted climate data to model electricity con-
sumption (Kumar et al., 2020; Maia-Silva et al., 2020). However, given that the household air conditioning use 
data were obtained as domain-wide means, we opted to maintain a similar structure in the climate data. This is a 
simplification of the real system, since populations are not uniformly spread out across domains. Moreover, this 
could lead to under- or over-estimations of demand in different areas of each domain. For example, a mountainous 
area of a domain might be cooler than an urban center situated in a valley. By using the mean temperature, the 
subsequent estimates of air conditioning, therefore, might be under-estimating the urban center (which is likely 
to be warmer than average) and over-estimating the mountainous locations (which are likely to be cooler than 
average). Nonetheless, the work presented here aimed to investigate high level trends across many domains. To 
this end, this study on the average household-level air conditioning use can be used as a stepping stone to more 
in-depth analyses evaluating the changes to local communities.

Additionally, the results presented in this study focused on only two global temperature thresholds: 1.5 and 2.0°C 
above pre-industrial levels. There is, however, a chance that global temperatures will surpass these thresholds, 
with the worst case scenario often being 4.0°C above pre-industrial levels. As such, it can be beneficial to eval-
uate the climate impacts that will occur after reaching 2.5, 3.0, and even 4.0°C in global warming. However, in 
the energy sector, much of the long-term planning is conducted for 2–3 decades in advance, making studies eval-
uating end-of-century electricity consumption to be impractical for policymakers. In an effort to remain within 
the current planning horizon for US energy infrastructure, we chose to evaluate only the closest temperature 
thresholds. Moreover, there are methodological issues when trying to use a predictive model for end-of-century 
projections. These issues need to be carefully evaluated and accounted for when doing such studies. Future work 
may focus on fixing these issues, as well as developing new methods that will allow us to investigate shifts in the 
electricity demand following the larger temperature thresholds.

Similarly, in this study, we used the CMIP5 GCMs for obtaining future climate data. However, the next generation 
of climate models (CMIP6) has recently been released. As such, work within the climate impacts space is begin-
ning to shift to the CMIP6 models. The CMIP6 models have been shown to exhibit different equilibrium climate 
sensitivities than previous iterations (Dong et al., 2020; Wyser et al., 2020), as well as an improvement in esti-
mating temperature extremes (Di Luca et al., 2020), which may aid future impact assessment studies. That being 
said, the CMIP5 suite of models is still widely used and remains a valid source of future climate projections. As 
the availability of bias-corrected, downscaled CMIP6 data becomes more widely available, we expect that there 
will be an increase in the use of such data. Future work may focus on leveraging these updated models, potentially 
evaluating changes in impact assessments between the CMIP5 and CMIP6 studies.

Finally, this study emphasized the climate impact on air conditioning use. This, however, is only part of the 
equation. There are a number of other factors that might lead to higher or lower air conditioning use than what 
was presented here. For example, improving insulation within houses can greatly reduce cooling needs (Dehwah 
& Krarti, 2020). Similar effects have been found through the use of green infrastructure (Perini et al., 2017). 
This would be especially helpful in older neighborhoods, as well as lower income neighborhoods. This would, 
in effect, not only reduce the need for cooling, but also help the communities that are most vulnerable to heat 
stress (Drehobl & Ross, 2016). Future work can start to build off the climate impacts presented here to account 
for these different solutions, as well as behavioral or cultural changes that might further contribute to changes in 
the electricity consumed for air conditioning.
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6.  Conclusion
To summarize, we provide a U.S.-wide assessment on the projected change in summer electricity demand owing 
to household air conditioning use under two key climate thresholds scenarios-1.5°C and 2.0°C above pre-in-
dustrial levels (Intergovernemental Panel on Climate Change, 2018). Our analysis leverages the state-of-the-art 
machine learning approach to establish a rigorously validated predictive model focused on the climate-sensitive 
portion the electricity demand for air conditioning. In other words, we investigated the impact of climate change 
alone, without considering potential changes due to technological advancements or socio-demographic shifts. 
Our results indicate that limiting warming to 1.5°C would have significant benefits to limiting household-level 
air conditioning demand. However, current trajectories indicate that it is more likely that the world will surpass 
the 1.5°C threshold within a decade. If this holds true, society will need to work towards minimizing the effects 
of climate change on the energy sector either by expanding the generation capacity—which if not fully powered 
by renewable resources, could further fuel anthropogenic climate change—or by improving space conditioning 
equipment efficiency. The results presented here demonstrates that in most states, a 1%–8% improvement in air 
conditioner efficiency would be needed to offset the increased demand. If these improvements are not met, there 
is a possibility of not being able to supply enough electricity to meet the demand. In this scenario, our analy-
sis shows that most domains can expect at least 20 million household-days without air conditioning in a given 
summer season. These household-days are more likely to disproportionately impact the low-income citizens, 
potentially leading to increased instances of heat stress induced health concerns in these communities (Khosla 
et al., 2020; Sanchez-Guevara et al., 2019). In order to protect the most vulnerable citizens, it is crucial that we 
work to limit warming to 1.5°C above pre-industrial levels, while also working towards ensuring air conditioner 
efficiency improvements that may ultimately reduce the load on the electric grid. Hence, understanding the prob-
able changes in electricity demand for air conditioning is a crucial step in preparing our electric power system 
for climate change.

Data Availability Statement
The data and code used in this study are available online via Zenodo (DOI:10.5281/zenodo.5705824).
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