
https://doi.org/10.1007/s10584-020-02669-7

Managing the water–electricity demand nexus
in a warming climate

Renee Obringer1 ·Rohini Kumar2 ·Roshanak Nateghi1,3

Received: 26 August 2019 / Accepted: 21 January 2020
© Springer Nature B.V. 2020

Abstract
Models that consider the interconnectivity between urban systems, including water and elec-
tricity, are becoming more common, both in research and in practice. However, there are still
too few that consider the impact of climate change, and fewer still that look beyond the base-
line climate data (i.e., precipitation and temperature). Here, a data-driven, regional model
that considers a wider array of climate variables is built and tested to evaluate the impact of
climate change on the coupled water and electricity demand nexus in the Midwestern USA.
The model, which is based on a state-of-the-art statistical learning algorithm, is first used to
compare model runs comprised of different climatic variables. The model runs included a
baseline model that considers only precipitation and temperature, as well as a selected fea-
ture model that considered a wider array of climatic variables, including relative humidity
and wind speed. Following this comparison, the model is used to make future projections of
the coupled water and electricity demand as a function of future climate change scenarios.
The results indicate that (1) the inclusion of additional climate variables beyond the base-
line provides a significant improvement in predictive accuracy, and (2) the climate-sensitive
portions of summer electricity and water use are expected to increase in the region by 19%
and 7%, respectively. Finally, the regional-scale model is leveraged to make city-level pro-
jections, indicating a 10–20% (2–5%) increase in electricity (water) use across the analyzed
cities due to a warming climate.
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1 Introduction

Urban infrastructure systems, and in particular water and electricity systems, are highly
interconnected. This interconnectivity, known as the water–electricity nexus, is well-
documented in the literature (Newell et al. 2019). There are several ways to analyze the
water–electricity nexus, such as evaluating the water needed to generate electricity (i.e.,
water for electricity) or the electricity needed to treat and distribute water (i.e., electric-
ity for water) (Derrible 2017). Additionally, one can consider the water–electricity demand
nexus that accounts for end-uses that require both water and electricity, such as running
a dishwasher, heating water, or landscaping (Maas et al. 2019; Escriva-Bou et al. 2018).
Although research on the water–electricity nexus, as well as other interconnected urban
systems, is becoming more commonplace, in practice many utilities operate in isolation,
making decisions that may end up being suboptimal at the system level (Hussey and Pittock
2012; Obringer and Nateghi 2019; Obringer et al. 2019). For example, residents in Phoenix,
AZ were encouraged to plant drought-tolerant plants in their yards to conserve water. This
resulted in a change in microclimate and led to increased electricity use, which ultimately
meant more water being used by the electricity utility during generation (Ruddell and Dixon
2014). This example is not a singular instance, but rather something that occurs in many
cities across the USA. These isolated efforts contradict the research, which has shown that
considering both water and electricity in conservation measures has the potential to achieve
savings at no net cost (Bartos and Chester 2014).

These suboptimal management decisions are undesirable under the current conditions,
but as urban areas continue to grow in population and the climate continues to change,
they could be disastrous. In fact, with estimates that 70% of the world population will
live in urban areas by 2050 (The World Bank 2010), utility companies could be experi-
encing a significant increase in demand, without taking climate into account. By taking
climate variability into account, any stress caused by the increase in demand will be exac-
erbated (Raymond et al. 2018; Mukhopadhyay and Nateghi 2017; Mukherjee and Nateghi
2017). For example, electric grids have been designed to handle specific peak loads, but
under climate change, peak loads will likely exceed the capacity margins more frequently
(Auffhammer et al. 2017; Lokhandwala and Nateghi 2018; Nateghi et al. 2016). Given that
these peaks in usage tend to be more sensitive to variations in climate than average usage
(Mukherjee et al. 2019), it is likely that electric utilities will experience a dangerous level
of stress, that could result in blackouts and shutdowns, if they do not prepare adequately
(Nateghi and Mukherjee 2017; Mukherjee et al. 2018; Cronin et al. 2018). This will be espe-
cially true for the residential sector, which is more sensitive to climate variability than the
commercial and industrial sectors (Mukherjee and Nateghi 2019). Therefore, it is crucial
that electric utilities have access to accurate and credible models that adequately character-
ize the climate sensitivity of residential electricity use, as it represents the sector that is most
likely to be affected by climate change. Moreover, electricity use is affected by water use,
especially in the residential sector (Escriva-Bou et al. 2018), making it imperative that these
models also account for the impact of climate change on water use.

Water utilities, unlike electric utilities, have the ability to store resources for later use.
However, as climate change progresses, droughts are likely to become more intense, poten-
tially reducing storage capabilities of reservoirs that are mainly used for public drinking
water supply (Dai 2011; Bruss et al. 2019). Moreover, increased temperatures usually lead
to increased water use within the residential sector (Balling et al. 2008; Ashoori et al. 2016),
which will put additional stress on the water supply reservoirs. These impacts of climate
change are not experienced in isolation, rather, they are interconnected, such that the impacts
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on the water sector will affect the electricity sector, and vice versa. For example, in the
event of a drought, the water supply reservoirs may experience a significant drop in storage,
which will put pressure on the water utility to maintain a certain service level under limited
supply. This water supply will be put under additional pressure by the increase in demand
that follows higher temperatures and drought conditions. Furthermore, there will be even
more pressure brought on by the electric utility which will require an increasing amount of
water for cooling generators in regions where the electricity is generated by thermoelectric
technology, as is the case in 90% of the USA (Scanlon et al. 2013; Cronin et al. 2018). In
this sense, the nexus leads to increased stress on both water and electricity utilities, espe-
cially under climate change (Pereira-Cardenal et al. 2014; Gjorgiev and Sansavini 2017).
This creates a need for water and electric utilities to work together to prepare for climate
change and make decisions that are the best for both sectors.

In order to ensure infrastructure managers and urban planners can make the best deci-
sions now and in the future, there needs to be increased development of accurate, credible,
and accessible models that take system interdependencies into account (Rachunok and
Nateghi 2019; Rachunok et al. 2019). However, there are only a few models that project the
water–electricity nexus into the future and they often only use a small subset of climate vari-
ables, generally precipitation and temperature (Venkatesh and Chan 2014; Mostafavi et al.
2018; Dale et al. 2015). The use of precipitation and temperature as climate predictors has
been considered the baseline for making demand projections for several years. However,
recent work on the climate sensitivity of the water–electricity demand nexus, has shown
that there are additional climate variables that need to be considered (Obringer et al. 2019),
such as relative humidity and wind speed, which are also considered to play major roles in
the experienced temperature. That being said, there are improvements to be made within
the methodology developed by Obringer et al. (2019). For example, the study focused on
building a generalizable model on a city scale rather than at a regional scale (Obringer et al.
2019). Given that climate change is a large-scale phenomenon, it is more reasonable to build
regional models if one is interested in making future projections based on climate change
scenarios. Additionally, the model by Obringer et al. did not separate the seasons within
the model, likely leading to a loss in nuance within the coupled demand profile (Obringer
et al. 2019). In this study, we seek to fill these gaps and improve the methodology, while
providing a novel analysis of the future water and electricity demand under climate change.

The purpose of this study is twofold: (1) to build and test a generalizable regional model
for predicting the interconnected water and electricity use in different periods throughout
the year and (2) use that model to project the water and electricity use into the future under
various climate change scenarios. The focus of this study is to isolate the impact of cli-
mate change on the water–electricity demand nexus; therefore, only climate variables were
considered as predictors within the modeling framework. Additionally, this study consid-
ers a wider array of climate variables than previously considered in other future projection
studies. The Midwest region of the USA, which has several established cities of varying
populations, was selected as the test region; however, the proposed modeling framework
presented here could be applied to different regions.

2 Data andmethods

There are a growing number of frameworks being developed to model the coupled water–
electricity nexus; however, there are few that take a variety of climate variables into account
when making future projections. The proposed framework is novel in that it accounts for
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a larger array of climate variables to assess their impacts on the coupled water–electricity
demand nexus at a regional scale. In this section, we will first describe the study area and
the data used in the model before discussing the modeling process and analysis.

2.1 Site description

In this study, the Midwestern region of the USA was selected as the study area (see
Fig. 1). Specifically, six established cities were chosen to be included in our regional model:
Chicago (IL), Cleveland (OH), Columbus (OH), Indianapolis (IN), Madison (WI), and Min-
neapolis (MN). These cities, and the region as a whole, can expect to see higher temperatures
and increased precipitation due to climate change (IPCC 2013), which will increase the vul-
nerability of the utility companies. Moreover, these cities have different water and electricity
utilities, that do not always work together, which puts them at risk for disadvantageous
management decisions in the face of climate change.
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Fig. 1 Study area: Midwestern region of the USA. The blue circles represent the cities included in the
regional analysis, sized relative to population, and the orange diamonds represent the weather stations that
were used as sources for the observational data
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2.2 Data description

There were two stages of data collection in this study: observational data (for model train-
ing, testing, and validation) and climate model outputs (for conducting future projections).
The first stage included response data (i.e., water and electricity use) from the US Energy
Information Administration (EIA) and local utilities, as well as predictor data (i.e., cli-
mate variables) from the National Centers for Environmental Information (NCEI) and the
National Oceanic and Atmospheric Administration (NOAA). Specifically, the response
variables, residential electricity use and residential water use, were obtained through the
EIA (US Energy Information Administration 2019) and local utilities, respectively. The pre-
dictor variables were obtained from the local climatological dataset maintained by NCEI
(NOAA National Centers for Environmental Information 2010) in addition to the El Niño
database maintained by NOAA (Wolter and Timlin 1998). This observational data, which
are listed in Table 1, were collected from January 2007 through December 2016 on a
monthly time scale. The response variables (water and electricity use) were normalized by
the service population, so as to make each city comparable in our regional model. Addition-
ally, the response data were de-trended following a procedure that is well-established within
the literature (Sailor and Muñoz 1997; Mukherjee and Nateghi 2017, 2019) to remove the
trends associated with technological advancements as well as socioeconomic and demo-
graphic changes over time. This process, which is further described in the Supplementary
Methods, is especially important for this study, since isolating the climate impact was one
the main goals.

The second stage of the modeling process focused on making the future projections using
the developed model. For this, climate data were taken from five CMIP5 global circula-
tion models (GCMs), namely the Geophysical Fluid Dynamics Laboratory—Earth Systems
Model (GFDL-ESM2M), the Hadley Centre Global Environment Model (HadGEM2-ES),
the Institut Pierre Simon Laplace Model (IPSL-CM5A-LR), the Model for Interdisciplinary

Table 1 The input variables used for developing the coupled water–electricity demand nexus model

Variable type Variable name Units Source

Response Monthly water use (normalized) L/cap Local utilities

Monthly electricity use (normalized) MWh/cap EIA-861Ma

Predictor Average maximum dry bulb temperature ◦C NCEIb

Average dew point temperature ◦C NCEIb

Average relative humidity % NCEIb

Average maximum relative humidity % NCEIb

Average wind speed m/s NCEIb

Average maximum wind speed m/s NCEIb

Accumulated precipitation cm NCEIb

El Niño/Southern oscillation index – NOAAc

Each variable was collected from January 2007 through December 2016 and aggregated to the monthly time
scale
aCitation: (US Energy Information Administration 2019)
bCitation: (NOAA National Centers for Environmental Information 2010)
cCitation: (Wolter and Timlin 1998)
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Research on Climate—Earth Systems Model (MIROC-ESM-CHEM), and the Norwegian
Earth System Model (NorESM1-M). These datasets included both the historical (1971–
2005) and the projection time frames (2006–2099). The projection data were considered for
two extreme future emission scenarios that have end-of-century radiative forcings equal to
2.6Wm−2 and 8.5Wm−2, denoted hereafter as RCP2.6 and RCP8.5 respectively. The GCM
data were made available from the Inter-Sectoral Impact Model Intercomparison Project
(ISI-MIP) (Warszawski et al. 2014) after screening through multiple GCMs from the CMIP5
archive (see the protocol report available on www.isimip.org for more information). The
climate data were downscaled and bias-corrected at a 0.5◦ global resolution using a trend-
preserving approach based on the WATCH observation data (Hempel et al. 2013). Notably,
this projection data has been used in several impact assessment studies including the recent
AR5 and SR1.5 reports of the Intergovernmental Panel on Climate Change (IPCC) (IPCC
2013, 2018). The data were extracted for the respective cities for each predictor variable
included in the final model at a monthly time scale to be used in making future projections
of the interconnected water and electricity use.

2.3 Statistical modeling and analysis

The modeling framework used in this study is based in statistical learning theory, and in par-
ticular, the branch of statistical learning theory known as supervised learning. Supervised
learning is an umbrella term for a variety of algorithms that aim to predict a known response
variable(s) given a series of predictor variables (Hastie et al. 2009). Mathematically,
supervised learning algorithms can be represented by the following (1):

Y = f (X) + ε (1)

where Y is the response variable(s), X is the series of predictor variables used to predict the
response, and ε is the irreducible error (ε ∼ N(0, σ 2)).

The goal of any supervised learning algorithm is to predict Y with as much accuracy as
possible. To do this, the algorithms work to minimize the expected error (Hastie et al. 2009),
as shown in the following (2):

min
1

N

N∑

i

�[f̂ (Xi), f (Xi)] (2)

Here, f̂ (Xi) represents the estimated function, f (Xi) represents the “true” function, and �

represents some measure of distance (usually based on the Euclidean distance) (Hastie et al.
2009).

One of the subcategories of supervised learning is tree-based algorithms. These algo-
rithms tend to be highly robust, leading to higher predictive accuracies, with the added
benefit of being more interpretable than other “black box” algorithms, such as neural net-
works or deep learning (Caruana and Niculescu-Mizil 2006; Nateghi et al. 2011; Nateghi
2012). In this study, the algorithm used falls under this tree-based algorithm subcategory.

2.3.1 Algorithm description

The algorithm used in this study, multivariate tree boosting, is an extension of gradient
tree boosting, which leverages the meta-algorithm boosting to improve predictive accuracy
(Friedman 2001). Boosting, mathematically represented in (3), works by iteratively fitting
models such that each subsequent model is a better prediction of the response variable(s).
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This improvement is accomplished through a weighting process that puts more emphasis
on misclassified data points, forcing the algorithm to focus on improving the prediction of
those points in future iterations as follows (Friedman 2001):

H(X) =
N∑

n

αnCn(X) (3)

Here,H(X) is the final model produced by the algorithm,N is the total number of iterations,
αn is the weight given to each prediction, andCn is the model produced using input variables
X at iteration n.

Multivariate tree boosting expands upon this algorithm to account for multiple response
variables. Specifically, the algorithm leverages the impact of the predictor variables on the
response variables as well as the covariance between response variables, resulting in an
accurate, simultaneous prediction of multiple outcomes (Miller et al. 2016). This is done
through maximizing the covariance discrepancy, such that the predictors that account for
the most covariance in the response variable nexus are selected for the final model (Miller
et al. 2016). This algorithm is summarized below:

Multivariate tree boosting is considered to be the state-of-the-art tree-based algorithm for
predicting multiple response variables simultaneously. Moreover, this algorithm has been
used in a variety of studies, ranging from psychological well-being (Miller et al. 2016) to
urban resilience modeling (Nateghi 2018; Obringer and Nateghi 2019). Most recently, the
algorithm was leveraged to effectively predict the climate sensitivity of the water–electricity
demand nexus (Obringer et al. 2019).

2.3.2 Modeling framework

There are three main steps to the modeling process, as shown in Fig. 2: (1) data collection,
aggregation, and preprocessing; (2) model training and testing with observational data; and
(3) future projections using climate model output. In this first step, the data were collected
as described above. The observational data were aggregated across the cities and grouped
into three time periods according to a well-documented energy economy model known
as the MARKet ALlocation (MARKAL) model (Loulou et al. 2004): summer months
(June–September), winter months (December–March), and intermediate months (April,
May, October, November) , to account for the seasonal fluctuations in the water–electricity
demand nexus. These new datasets were the initial inputs to three separate models—one for
each period.
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Fig. 2 Schematic for the modeling framework

The model training and testing was the next step. This step used the observational data
to first determine the important predictor variables and then validate the predictive accuracy
of the model. The important variables were selected based on a threshold criterion: any
variable with a relative influence greater than 5% on either response variable in a given
period was kept for that period’s final model. Ultimately, five variables were kept: average
maximum dry bulb temperature, average dew point temperature, average relative humidity,
average wind speed, and accumulated precipitation.

The final step was to project the water and electricity use into the future using the climate
data obtained from the global circulation models. The data were collected and separated into
seasonal periods following the same process described for the observational data. Then, the
model was run using the previously selected important variables.

2.4 Future projection analysis

The future projection analysis was performed in accordance with the recent IPCC SR1.5
report (IPCC 2018) to analyze the respective changes in water and electricity use for differ-
ent global warming levels. Using the historical period (1971–2000) as the reference values,
the percent change between the 30-year-historical period and the 30-year-future periods
corresponding to three global warming levels (1.5, 2.0, and 3.0 ◦C above pre-industrial
levels) was calculated. A time-sampling approach (James et al. 2017), which has been
recently adopted in several impact assessment studies (Jacob et al. 2018; Samaniego et al.
2018; Marx et al. 2018; Singh and Kumar 2019), was used to identify the corresponding
30-year-future periods. In this approach, the warming during the reference period, which
was approximately 0.46 ◦C warmer than the pre-industrial global mean temperature (1881–
1910), was established based on several observational datasets (Vautard et al. 2014; Jacob
et al. 2018). Using this offset value (i.e., 0.46 ◦C), the 30-year periods were identified for
each of the 10 GCM–RCP combinations (i.e., 5 GCMs × 2 RCPs) in which the global mean
temperature increased by 1.04, 1.54, and 2.54 ◦C respective to the reference period. These
periods correspond to the 1.5, 2.0, and 3.0 ◦C temperature thresholds used in the analysis.
The future projections were obtained for each climate model simulation for two warming

Climatic Change (2020) 159:233–252240



scenarios: low warming (RCP2.6) and high warming (RCP8.5). It should be noted that under
the low-warming scenario, the 3.0◦ temperature threshold is not reached, and therefore was
not included in the analysis.

3 Results

Following the modeling framework outlined in Section 2.3.2 and Fig. 2, the interconnected
water and electricity use was projected into the future under various climate change scenar-
ios. In this section, we first discuss the model performance with the observational data and
compare it to a conventional precipitation–temperature model before delving into the future
projections of water and electricity use.

3.1 Model performance

As described above, the first part of the analysis in this study was building the regional
model for three different periods—summer, winter, and intermediate months. The main goal
of this first task was to demonstrate the effectiveness of the proposed modeling framework
that makes use of a larger array of climate variables than the baseline model that considers
only precipitation and temperature. As shown in Fig. 3, the Selected Feature model (i.e.,
the proposed model) tends to predict the water and electricity use more accurately than the
Baseline model (i.e., the model that only considers precipitation and temperature, denoted
“precip-temp” in the figure). This is especially true in the extreme ends of the consumption
patterns, where predictive accuracy is crucial. Moreover, the difference between the selected
feature and baseline models is more pronounced in the water use, for both summer and
winter periods. This indicates that the additional variables considered in the selected feature
model—dew point temperature, relative humidity, and wind speed—are more influential
when predicting water use compared to electricity use. Figure 3 shows the results from the
summer and winter periods; the results from the intermediate period can be found in the
Supplemental Materials (Figure S1).

The improved performance of the selected feature model is further demonstrated in
Fig. 4, which compares the model performance measures for both models during the sum-
mer and winter periods (see Supplemental Figure S2 for the model performance during
the intermediate period). Both the out-of-sample RMSE and out-of-sample R2 were used
to assess the model performance. RMSE is a measure of error, in which lower values are
representative of a better prediction (i.e., less error). Often, RMSE is used to evaluate the
predictive performance of the model. On the other hand, R2 can be thought of as a mea-
sure that accounts for the percent of variance within the data that is explained by the model.
In this sense, a value closer to 1 indicates that the model is explaining more variance in
the data. That being said, R2 is rarely used to assess predictive performance, as it is not a
measure of error. Together, however, RMSE and R2 can be used to assess overall model
performance—both from a predictive standpoint and the amount variance the model is able
to capture.

3.2 Future water and electricity use projections

Following the analysis with the observational data, the selected feature model was used to
make future projections of the climate-sensitive portion of the water and electricity use in
the region. The predictor variables were obtained from the five CMIP5 global circulation
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Fig. 3 Observational data compared with the two types of model runs: (1) a baseline model that only con-
sidered precipitation and temperature (denoted “Precip-Temp”) and (2) the proposed selected feature model
that considers a larger array of climate variables (denoted “Selected Feature”). The results are presented for
the summer and winter periods. Note that the data is presented as a line graph, so the x-axis is representative
of the count of the data points

models discussed earlier. The purpose of this analysis was to show the potential change in
water and electricity use due to climate change alone. In this sense, there was no consid-
eration of technological changes or cultural shifts that would also have an impact on the
water and electricity use. To evaluate the potential shifts in future water and electricity use,
the percent change was calculated between the “historical” period (1971–2000) and the
30-year period in which key temperature thresholds were reached within the model. The
historical baseline data from 1971–2000 can be found in Supplementary Figure S3. These
thresholds—1.5, 2.0, and 3.0 ◦C—were selected based on several recent climate change
assessment studies (Jacob et al. 2018; Samaniego et al. 2018; Marx et al. 2018; Singh and
Kumar 2019; IPCC 2018). Initially, the percent change was calculated based on all the
model output, regardless of the future pathway scenario, followed by a scenario–specific
(i.e., RCP2.6 and RCP8.5) calculation. Figures 5 and 6 show the results of this analysis
for both the summer and winter periods (see Supplementary Figure S4 for the intermediate
period projections).

In general, the water use is projected to increase after all three temperature threshold
scenarios and in both periods (see Fig. 5), but the electricity use is only projected to increase
in the summer period (see Fig. 6). For water use in particular, as the temperature continues
to increase (i.e., higher thresholds are reached), the percent change in median water use also
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Fig. 4 Out-of-sample model performance results (RMSE and R2) from the two styles of model runs: (1)
a baseline model that only considered precipitation and temperature (denoted “Precip-Temp”) and (2) the
selected feature model that considers a larger array of climate variables (denoted “Selected Feature”). The
results are presented for the summer and winter periods

increases. In fact, in the summer period, the results indicate a relative increase in water use
regardless of the temperature threshold or warming scenario. Given that the 1.5◦ threshold
is approaching, these results demonstrate the necessity for Midwestern water utilities to
prepare for increased summer demand in the near future. Similar results were shown for
the summer electricity use in Fig. 6. Interestingly, the model shows a median decrease in
winter electricity use across all the thresholds and scenarios, but especially after the 3.0◦
threshold is reached. This is likely due to warming temperatures and a reduced need for
space heating in the winter, which is a major contributor to electricity consumption during
the winter months. However, this potential reduction in winter electricity use was not offset
by the potential increase in summer electricity use, making it imperative that utilities begin
to find ways to increase their supply capabilities. In addition to the results presented here,
the model-specific projections can be found in the Supplementary Figure S5.

4 Discussion

This study focused on building a regional model to simultaneously project the climate sensi-
tive portion of interconnected water and electricity use into the future under various climate
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Fig. 5 The median relative change in water use after three different temperature thresholds have been reached
in the summer and winter periods. The error bars represent the interquartile range. The left plots show the
aggregate of both warming scenarios and the right plots show the same change, separated by scenario. Note
that under the low-warming scenario (RCP2.6), the 3.0◦ threshold is not reached before 2100, and thus is not
shown in the figure

change scenarios. There were two main parts of the analysis, the first of which was to build
a rigorously tested predictive model (i.e., the selected feature model), using a variety of
climate variables, and compare the predictive accuracy to the baseline model that only con-
sidered precipitation and temperature. The results from this comparative analysis showed
a significant improvement over the baseline model when dew point temperature, relative
humidity, and wind speed were included in addition to the standard dry bulb temperature
and precipitation. In fact, initial results indicated that by including the average daily max-
imum values for relative humidity and wind speed, rather than the daily averages included
here, there were additional improvements over the baseline model—especially in the win-
ter period. However, the GCM projections of these daily maximum variables are not readily
available for downloading, nor are they easily extractable from the model output directly.
Since the aim of this modeling framework is to provide practitioners with a tool to make
projections for their own systems, it was decided to include the daily averages instead of
the maximums, as the climate projections are easier to obtain. In future iterations, including
these maximum values in the model may lead to more accurate projections. Nevertheless,
the selected feature model developed here did show significant improvement, especially on
the extreme ends of the demand profile (see Figs. 3 and 4).
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Fig. 6 The median relative change in electricity use after three different temperature thresholds have been
reached in the summer and winter periods. The error bars represent the interquartile range. The left plots show
the aggregate of both warming scenarios and the right plots show the same change, separated by scenario.
Note that under the low-warming scenario (RCP2.6), the 3.0◦ threshold is not reached before 2100, and thus
is not shown in the figure

The selected feature model was used in the second part of the study, which was to make
future projections of water and electricity use based on future climate change scenarios.
These results indicated a likely increase in both water and electricity use during the summer
periods (see Figs. 5 and 6), with minimal uncertainty. During the winter period, however,
there was more uncertainty in the projections, although the model still showed a median
increase in water use and a median decrease in electricity use. Previous work indicated
that warmer temperatures led to increased water use (Obringer et al. 2019), likely due to
increased consumption for landscaping purposes. Landscaping, however, is generally only a
summer demand pattern. It is possible that the increased temperatures allow for some winter
landscaping in the more southern cities, which could explain the slight median increase
in water demand. However, the large uncertainty bands make this determination difficult
without further investigation beyond the scope of this study. In fact, given the range of
possible winter temperature projections, as well as the variance introduced by seasonal shifts
in the general climatic conditions, it is possible that winter water use will decrease along
with electricity use. This decrease in winter electricity use may be due to the warming
temperatures, which would lead to a decreased need for space heating in the winter months
(but increased space cooling in the summer, hence the median increase in summer electricity
use). Ultimately, this winter decrease paired with the summer increase could put additional
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pressure on the electricity utilities to cope with the seasonal fluctuations. Moreover, both
cases represent a potential economic loss to the utility—in the summer, there is a higher
chance for shortages, while in the winter, there is a higher chance for surplus, both of which
are undesirable for electricity utilities.

In addition to the results indicated by the regional model projections, it is possible to use
the regional model to predict the water and electricity use for specific cities. The results
from these city-specific projections can be found in Fig. 7, which shows the results from the
summer period projections for the 1.5 and 2.0 ◦C temperature thresholds. These two thresh-
olds are the ones that are most likely to be passed in the near future—1.5 ◦C is projected
to be reached around 2030 and 2.0 ◦C is projected to be reached around 2055—as well as
being politically relevant at the international scale. The recent IPCC report, for example,
recommended that warming levels be kept below 1.5 ◦C if the world is to avoid the most
detrimental consequences of climate change (IPCC 2018). But the 2015 Paris Agreement,
which has been signed by the majority of countries around the world, argues for a 2.0 ◦C
limit (UNFCC 2015). Either way, these are the main thresholds being discussed at the inter-
national level, and are therefore important for utility companies that will need to provide
adequate services regardless of the temperature thresholds that are ultimately reached.

In each of these six cities, the patterns of future consumption are similar. Each city,
for example, is projected to have increases in both summer water and electricity demand,
although the summer electricity is projected to have a larger relative increase. Additionally,
there are relative larger changes after the 2 ◦C threshold than the 1.5 ◦C threshold, which is
to be expected. There are also some differences between the cities. For example, Chicago is
more urban (as opposed to suburban) with less residential green space (i.e., yards) than the
other cities on the list. This likely leads to lower summer water consumption for outdoor
landscaping, and thus a somewhat lower increase in median water demand when compared
to the other cities. Minneapolis is the northern-most city in the analysis, and likely to see less
of a severe summer temperature increase then the other cities. This could explain the rela-
tively lower increase in summer electricity than Indianapolis and Cleveland, for example.
Interestingly, Columbus and Indianapolis, which are close in population and are geograph-
ically similar, are projected to experience different magnitudes of changes to the water and
electricity demand profile, with Columbus projected to see less intense changes. This may
be due to the sprawling nature of Indianapolis (Indianapolis is approximately 160 mi2 larger
than Columbus), which generally means more single family, detached homes. This would
likely lead to increased water use (for landscaping) and electricity use (for space cooling).
In general, the cities all follow the same pattern, although there are some differences. That
being said, even the small differences between the cities, as well as the differences between
the thresholds can lead to large changes in the total demand.

If one focuses on Chicago, which is the largest city in the region, one can see that summer
electricity is projected to increase significantly during the summer months with minimal
uncertainty. In fact, after passing the 1.5◦ threshold, Chicago’s electric utility could expect
to see a 12% increase in per capita demand. Should the economy grow in accordance to
the Shared Socioeconomic Pathway (SSP) scenario 1 (i.e., “sustainable growth”), the pop-
ulation in Cook County (covering the city the Chicago), would be 5.39 million by 2030
(Hauer 2019) which roughly corresponds to the crossing of 1.5◦ threshold. Given a per
capita demand estimate of 0.97 MWh/capita in the projected period, this would lead to an
additional 745,000 MWh in monthly electricity demand during the summer months, only
attributable to climate change. Without technological advances or cultural shifts towards
conservation, this increase in demand will become more dramatic which will severely strain
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Fig. 7 The median relative change in water and electricity use for the individual cities in the study region
for the summer period following two of the three key temperature thresholds. The error bars represent the
interquartile range
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existing infrastructure. For example, if the SSP5 scenario is followed (i.e., “fossil-fueled
development”), the population is projected to be 5.71 million by 2030 (Hauer 2019), which
corresponds to approximately 1.06 million additional MWh.

This need for technological advances or cultural changes only increases after the 2.0 ◦C
threshold, which is expected to be crossed in the 2050s, should the current trend hold and no
significant climate action plans be implemented. In fact, after this threshold the electricity
demand in Chicago could increase by 1.6 million MWh (compared to the reference period)
should warming not be capped at the recommended 1.5 ◦C threshold, assuming a popula-
tion of 6.09 million in Cook County (Hauer 2019). This intense increase demonstrates the
benefit of following the IPCC recommendation and working to cap global emissions from
the local utility perspective. Overall, these results signal the importance of making water
and electricity use projections and building models that can be adopted by utility managers
that need to prepare for future demand shifts.

That being said, the above future changes in water and electricity demand in the Mid-
western region of the USA include considerable uncertainty. The uncertainty presented here
as the interquartile range (i.e., the error bars in Figs. 5 and 6) demonstrates relatively larger
uncertainty during the winter season in both water and electricity use. In fact, the percent
change spans over both positive and negative values—leading to highly uncertain projec-
tions. This makes preparing for the future more difficult, since it cannot be said, for certain,
what will happen. Although the signal is stronger in the summer months (i.e., there is a
demonstrable increase in usage across all scenarios), there is still some uncertainty. Part of
this uncertainty comes from the climate models themselves (see Supplemental Figure S5
for the model-specific projections). As discussed earlier, only five climate models were
selected, as they are most often used within the literature (IPCC 2013, 2018), which intro-
duces bias into the study. However, these are pitfalls that occur with any future projection
study. Moreover, this modeling framework has been developed such that it can be applied
at a broader scale with a larger number of climate models included. In this sense, although
the uncertainty is present, the results can still be interpreted as potential pathways forward,
should the outcome of the climate models come to pass.

5 Conclusion

The goal of this study was to build a data-driven, regional model to evaluate the impact
of future climate change on the coupled water and electricity demand nexus. The model-
ing framework leverages the multivariate tree boosting algorithm to simultaneously predict
the interconnected water and electricity demand in the residential sector. There were two
response variables: monthly water and electricity use, and five final predictor variables:
maximum dry bulb temperature, average dew point temperature, average relative humid-
ity, average wind speed, and accumulated precipitation. The proposed selected feature
model proved to be more accurate than the baseline model, which only included maxi-
mum dry bulb temperature and accumulated precipitation. Many demand projection studies
in the past have used only this standard baseline model, which tended to underpredict
the higher demand levels. Accurately predicting these higher demand levels, which rep-
resent the peak load, is crucial for utility managers. The results presented here indicate
that including additional variables, such as relative humidity and wind speed, could greatly
improve the predictive accuracy of peak load forecasting models, which will be beneficial
for practitioners.
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Additionally, the modeling framework was used to make future projections of the water
and electricity demand, given the output from several global circulation models. The results
from the projection analysis show that the summer water and electricity demands can be
expected to increase due to climate change. This means that, ultimately, utilities will either
need to rely on technological advances or cultural shifts to limit these increases in demand
or spend a significant amount of money to expand their supply capacities. On the other hand,
the winter demands were slightly more uncertain, but there is a potential that winter elec-
tricity use will decrease due to climate change. This will introduce the additional challenge
of managing fluctuations, especially for electric utilities, which lack the storage capabilities
of most water utilities.

The modeling framework presented here can be used by utility managers, policymak-
ers, and urban planners, for example, who are interested in gaining a better understanding
of how their per capita demand may shift due to climate change. The results presented
here can be combined with other research studies that focus on the technological and cul-
tural aspects of demand projections to create a well-rounded understanding of the future for
which cities must prepare. Additionally, although the model was built and tested in the Mid-
western region of the USA, the framework can easily be applied to different regions around
the world.
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