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ABSTRACT 

Measuring the contribution of variable and supply-limited resources to grid reliability is 
becoming increasingly important as such resources expand their role in the electricity grid.  
Several large system operators have recently adopted Effective Load Carrying Capability 
(ELCC) as an approach to measuring these contributions.  ELCC measures a resource’s 
contribution to reliability based on the incremental quantity of load that can be satisfied by 
adding the resource to the grid. 

ELCC represents an important advance in calculating resource adequacy, as it better 
reflects the realities of how supply resources contribute to system reliability compared to 
previous methods.  Computing ELCC, however, generally involves sophisticated and complex 
Monte Carlo modeling to account for the numerous factors that affect system reliability.  
Embedded in this modeling are many judgments that affect the results.  The complexity of the 
modeling creates a ‘black box’ that makes the embedded judgments and their implications 
difficult to assess. 

In this paper, we provide a simple model that avoids much of the complexity of the full 
Monte Carlo model while preserving the core essence of the ELCC calculation.  While it does 
not generate precise estimates of ELCC, the model illustrates the basic factors that affect ELCC 
calculations and illuminates some core results.  Results from the model show the following: 

 Different ELCC methods, and in particular whether to measure ELCC based on 
marginal or average values, significantly affect how much particular resources are 
credited for their capacity. 

 The marginal ELCC for solar and wind resources declines quickly as their share 
of total power production increases in the grid, implying that increases in these 
variable renewable resources will increase the benefits of complementary 
resources such as electricity storage facilities.  The effect is especially strong for 
solar power, apparently because output from solar resources is inherently limited 
to certain hours of the day.  This prevents solar from contributing to reliability at 
other hours when it is not available.  In contrast, storage, which has no such 
limitation, does not have similar declines in marginal ELCC.  

 Using any type of ELCC averaging approach creates choices about ELCC 
resource classification that can have large impacts on derivate ELCC ratings. 
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I. Introduction 

As variable renewable energy resources continue to penetrate electricity grids, there has 
been increasing interest in how to measure the contribution of these resources to system 
reliability.  Measuring a resource’s contributions to reliability is important not only for grid 
operators who are concerned about preventing blackouts, but also for the owners of resources, 
whose capacity market payments depend on how their contributions are measured. 

Traditionally, system operators such as Regional Transmission Organizations (RTOs) 
have determined how much capacity a resource may offer based on the resource’s average 
availability during periods of peak usage, using fixed factors like a forced outage rate (Aagaard 
and Kleit 2022, 144-46). These traditional methods assume that all accredited capacity in the 
system contributes equally to reliability and that each resource’s performance is independent of 
the performance of other resources.  As developments in the grid have called these assumptions 
into question, more sophisticated methods of evaluating capacity that examine the incremental 
effects of adding a particular resource to the grid on the overall reliability of the system have 
arisen. 

Several RTOs have adopted a measurement method for reliability contributions known as 
“Effective Load Carrying Capability” (ELCC).  ELCC measures the incremental additional 
demand for power that can be satisfied due to the addition of a resource to the system.  This 
incorporates the coincidence of an additional new resource’s output with peak demand and with 
output from other existing resources.  ELCC creates a percentage term that measures the amount 
of load a particular generator can support as a percent of the relevant generator’s capacity. 

ELCC represents an important advance in calculating resource adequacy that better 
reflects the realities of how supply resources contribute to system reliability.  Computing ELCC, 
however, generally involves sophisticated and complex Monte Carlo modeling to account for the 
numerous factors that affect system reliability.  Embedded in this modeling are many judgments 
that affect the results.  The complexity of the modeling creates a ‘black box’ that makes the 
embedded judgments and their implications difficult to assess. 

In this paper, we provide a simple model that avoids much of the complexity of the full 
Monte Carlo model while preserving the core of the ELCC calculation.  We demonstrate the 
model by applying it to PJM.  Although too simplified to generate precise estimates of ELCC, 
the model shows that different ELCC methods have important impacts on how much resources 
are credited for their capacity.  The model results also show that the ELCC for variable 
renewable resources declines quickly as their share of total power production increases in the 
grid.  This implies that increases in variable renewable resources will create a strong need for 
grid operators to have access to complementary resources such as electricity storage facilities. 

Part II describes the ELCC concept and how ELCC is calculated.  Part III explains the 
paper’s convulsion model, including the base scenario and the data used.  Part IV applies the 
model to illustrate the impact of adding solar, wind, and storage resources separately to the 
system.  Part V analyzes complementary effects when solar, wind, and storage resources are 
added together.  Part VI illustrates PJM’s delta method for calculating ELCC.  Part VII compares 
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the loss of load expectation, a measure of reliability, before and after addition of solar, wind, and 
storage resources. 

II. Background 

A. The ELCC Concept 

The purpose of a capacity market is to enhance the reliability of the electricity grid by 
compensating resources to be available to provide power when needed and thereby ensuring 
overall resource adequacy.  Similarly, resource adequacy requirements aim to ensure reliability 
by requiring resources to be available when needed.  It is not always clear, however, how to 
measure the contribution of supply resources to overall system capacity and reliability (Madaeni, 
Sioshansi, and Denholm 2012, 2).  Not all capacity in the system contributes equally to 
reliability.  Overall system capacity and therefore reliability depends not only on the amount of 
power that a supply resource can contribute to the system when operational but also on other 
factors such as the likelihood that a resource will be operational at the times when power 
becomes scarce in the system.  An ideal capacity market or resource adequacy requirement 
would accurately account for these factors in counting a resource’s capacity.  The issue of how to 
count capacity has gained in importance as available revenues in capacity markets have grown, 
variable generation such as wind and solar power has increased, and concerns have arisen about 
the availability of natural gas plants with potentially insecure fuel sources. 

Traditionally, system operators  have counted the capacity a resource may offer based on 
the resource’s average availability during certain periods, using factors like a forced outage rate 
or average historical output (e.g., PJM 2022, 90).  These traditional approaches assume that all 
accredited capacity in the system contributes equally to resource adequacy and that each 
resource’s performance is independent of the performance of other resources (Gillespie and 
Ewing 2021, 10, 13). 

As electricity grids increasingly include a greater variety of resources, these historical 
assumptions about the relationship between resource performance and system reliability are 
becoming less tenable.  The consequences may be significant.  If reliability analyses do not 
accurately reflect actual reliability conditions, then electricity systems may fail to achieve their 
reliability targets (Gillespie and Ewing 2021, 12).  In addition, capacity market revenues, which 
run into the billions of dollars annually, may not efficiently compensate resources for their 
reliability contributions. 

More sophisticated methods of evaluating capacity examine the incremental effects that 
adding a particular resource to the grid has on the overall reliability of the system (Aagaard and 
Kleit 2022, 147-48).  This systemic analysis incorporates two additional factors not fully 
reflected in a simple capacity factor or forced outage rate.  First, some of the same environmental 
conditions that determine the availability of a variable resource, such as sun and wind, also affect 
load.  Second, a resource’s contribution to reliability depends on how the timing of its output 
coincides with the timing of the output of other resources on the grid.  These two factors are 
especially but not exclusively of concern for variable and storage resources. 
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ELCC is a method of counting capacity that addresses the limitations of conventional 
approaches by measuring the incremental demand for power that can be satisfied due to the 
addition of a resource to the system. This approach, which dates from Garver (1966, 910), 
incorporates the coincidence of a resource’s output with peak load and with output from other 
existing resources.  ELCC analysis reflects the insight that a resource’s additional capacity only 
increases system reliability to the extent it generates electricity during periods in which there is a 
risk of resource inadequacy. 

Many system operators and utilities are using or considering ELCC, primarily to assess 
variable resources such as wind and solar and energy-limited resources such as storage (Olson, 
Ming, and Carron 2021, 12).  The New York Independent System Operator (NYISO) uses a form 
of ELCC that it calls Marginal Reliability Improvement to accredit all resources’ capacity values 
based on their marginal contributions to resource adequacy (FERC 2022a, ¶ 21).  The PJM 
Interconnection uses a version of average ELCC to accredit the capacity of variable resources 
(e.g., wind and solar) and limited duration resources (e.g., storage) (PJM 2022, Schedule 9.1).  
At this writing ISO New England is in the process of considering whether to adopt an ELCC 
method for its resources (Chadalavada 2021, 4). 

B. ELCC Calculation 

Conceptually, calculating ELCC is relatively simple.  Holding reliability constant, the 
analysis determines how much demand an electricity system can support with and without the 
resource in question.  The difference between these two—that is, the incremental additional 
demand that can be satisfied with the resource (versus without the resource)—determines the 
ELCC of the resource, often expressed as a percentage of the resource’s nameplate capacity 
(Olson, Ming, and Carron 2021, 21).   

Operationally, calculating ELCC is far more complicated.  ELCC is a function of the 
performance of every resource in the system (Olson, Ming, and Carron 2021, 22).  Theoretically, 
the ELCC is a surface in a multidimensional space, with each dimension representing a resource 
in the system.  The number of dimensions therefore equals the total number of individual 
resources in the system (Olson, Ming, and Carron 2021, 22, 30).  Calculating ELCC to reflect 
this complexity would be overwhelming.  In reality, most ELCC analyses simplify the 
calculations by lumping individual resources into categories by technology—for example, all 
solar resources. 

Because ELCC focuses on the effect of a resource on the overall reliability of the system, 
it concentrates on periods during which the risk of system failure is highest (Levitt 2021, 5).  As 
a result, ELCC is highly sensitive to resource performance during such periods.  Resource 
performance during hours that do not pose a high risk of shortage, by contrast, are largely 
irrelevant to ELCC (Levitt 2021, 12). 

ELCC measures for both variable resources and energy-limited resources generally 
decline as a category of resources increases its penetration of the market, due to saturation effects 
(Olson, Ming, and Carron 2021, 24).  ELCC for variable resources falls because, as a technology 
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saturates the market, reliability risks shift to other times when the resource is not as effective,  
For example, if system has great deal of solar power, reliability risks may move to the early 
evenings.  Increasing solar penetration, at least without synergistic technologies such as storage, 
cannot buttress reliability in the evenings when solar power wanes.  Thus, the ELCC of solar 
power declines as solar saturates the market and reliability risks shift away from times during 
which solar is effective.  ELCC for energy-limited resources such as storage may decline 
because the ability of energy-limited resources to deliver power declines as the number of hours 
that they deliver power increases. 

An important and controversial decision when adopting an ELCC for any system is how 
to count the ELCC of an individual resource or category of resource.  Different specific 
approaches have been proposed, which fall into two general methods:  Marginal ELCC and 
Average ELCC.   

1. Marginal Method 

The marginal method assigns each resource’s ELCC value based on the resource’s 
incremental contribution to the reliability of the system, measured relative to the rest of the 
system’s portfolio of resources.  In operating its capacity market, NYISO counts the capacity of 
all resources in the market according to their marginal ELCC (FERC 2022a, ¶ 21).  Proponents 
of the marginal method assert that, by counting capacity’s contribution at the margin, the method 
sends accurate price signals to resource developers about the value of an additional resource to 
the market (FERC 2022a, ¶ 49). 

Critics of the marginal method of counting capacity contend that, because for some 
categories of resources the marginal ELCC will be lower than the average ELCC, the marginal 
method does not give a category of resources credit for its full contribution to the reliability of 
the system (FERC 2021, ¶ 19).  This leads the marginal method, its critics assert, to undercount 
reliability contributions from resources with a declining marginal contribution of capacity to 
reliability (Ho and Pappas 2022, 3).   

2. Average Method 

The average method calculates the ELCC for a category of resources based on the 
category’s average contribution to reliability.  PJM uses the average method in counting capacity 
for variable and limited-duration resources (FERC 2021, 2).  PJM uses a particular method of 
calculating average ELCC that calculates the ELCC of a category of resources based on the 
average of the marginal ELCC of the resource if it were the first in the category to be added to 
the system and the marginal ELCC of the resource if it were the last in the category to be added 
to the system, with adjustments so that the sum of the average ELCC values across all categories 
of resources equals the ELCC of the entire portfolio of resources in the system (FERC 2021, ¶ 
19).  Similar methods are sometimes known as the ‘delta method’ (Schlag and Ming 2020, 12). 

Advocates for the average method argue that it fairly compensates resources for their 
contributions to reliability by counting the full contribution to reliability, including inframarginal 
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reliability benefits (Ho and Pappas 2022, 6).  Critics of the average method contend that it 
overcounts capacity from resources with declining marginal reliability contributions, leading to 
investments in a resource type even after the marginal cost of a resource exceeds its contribution 
to reliability (LeeVanSchaick and Coscia 2021, 26).  This creates inefficiencies in the capacity 
market. 

III. The Convulsion Model  

We created a relatively simple “convulsion” or “enumeration” ELCC model, using the 
approach of Malik and Albadi (2020) and data from the PJM system from 2021to calculate 
ELCCs for solar, wind, and storage power in that RTO.  The simplicity of the model limits the 
accuracy and precision of its outputs, so it is not intended to predict actual ELCC values.  It can, 
however, qualitatively illustrate how ELCC is calculated from the characteristics of an electricity 
grid system; how ELCC varies depending on the characteristics of the supply resources, 
including variable and limited-duration resources; and how the interaction of different categories 
of resources can affect ELCC values. 

A. Base Scenario 

We assume a simple system composed of five different generators, each with a certain 
capacity and operating/outage probability.1  Table 1 presents the five generators, their capacities, 
and their operating and outage factors. 

Table 1: Generator Capacities and Operating Factors 

Generator Capacity 
Operating 

Factor 
Outage 
Factor 

A 50 0.94 0.06 
B 74 0.95 0.05 
C 92 0.96 0.04 
D 108 0.97 0.03 
E 125 0.98 0.02 

 

Note that in this scenario the smaller generators arbitrarily have slightly lower operating factors 
than the larger generators. 

The number of generator combinations is 2N, where N is the number of generators in the 
system.  Thus, with 5 generators there are 32 different outcomes, each with its own probability of 
occurring.  We assume that forced outages are uncorrelated for these resources.  From the data in 

 
1 Alternatively, because the model later scales this simple system to the size of PJM, these five generators 
can be conceptualized as tranches of numerous generators. 
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Table 1 we create a table of event probabilities (Table 2), in declining order of available 
capacity: 

Table 2: Capacity Supply Probabilities 

Scenario Online Resources Offline Resources Event Probability Available 
Capacity 

1 ABCDE None 0.81493 449 
2 BCDE A 0.05202 399 
3 ACDE B 0.04289 375 
4 ABDE C 0.03396 357 
5 ABCE D 0.02520 341 
6 CDE AB 0.00274 325 
7 ABCD E 0.01663 324 
8 BDE AC 0.00217 307 
9 BCE AD 0.00161 291 
10 ADE BC 0.00179 283 
11 BCD AE 0.00106 274 
12 ACE BD 0.00133 267 
13 ACD BE 0.00088 250 
14 ABE CD 0.00105 249 
15 DE ABC 1.14072E-04 233 
16 ABD CE 6.92968E-04 232 
17 CE ABD 8.46720E-05 217 
18 ABC DE 5.14368E-04 216 
19 CD ABE 5.58720E-05 200 
20 BE ACD 6.70320E-05 199 
21 BD ABE 4.42320E-05 182 
22 AE BCD 5.52720E-05 175 
23 BC ADE 3.28320E-05 166 
24 AD BCE 3.64720E-05 158 
25 AC BDE 2.70720E-05 142 
26 E ABCD 3.52800E-06 125 
27 AB CDE 2.14320E-05 124 
28 D ABCE 2.32800E-06 108 
29 C ABDE 1.72800E-06 92 
30 B ACDE 1.36800E-06 74 
31 A BCDE 1.12800E-06 50 
32 None ABCDE 7.20000E-08 0 
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Consider, for example, combination #2.  In this combination, generators B,C, D and E 
operate, but generator A is off-line.  The probability that these five events will occur 
simultaneously is as follows: 

Pr(BCDE, not A) = Pr(not A) * Pr(B) * Pr(C) * Pr(D) * Pr(E) 

Substituting in the probabilities from Table 1, 

Pr(BCDE, not A) = 0.06 * 0.95 * 0.96 * 0.97 * 0.98 = 0.05202. 

Thus, the probability of this combination of events is a little more than five percent.  Moreover, 
the operating generators—B, C, D, and E—supply 399 MW of capacity to the system in this 
scenario. 

Using the probabilities from Table 2, we then calculate the probability of a system outage 
(loss of load) if the demand is between the amount of capacity in the relevant combination and 
the amount of capacity in the next-highest combination.  Table 3 reports the system power output 
and the resulting probability of a system outage in each scenario (combination of resources). 

For example, assume that the system demand is 240 MW.  At that level of demand, the 
system will be able to meet demand if operating in Scenarios 1 through 14, but a system outage 
will occur in Scenarios 15 through 32.  The probability of a system outage—that is, the 
probability of any of Scenarios 15 through 32 occurring--equals the sum of the probabilities of 
Scenarios 15 through 32, which is 0.176 percent.  Table 3 reports the system outage probabilities 
for the 32 scenarios. 

Table 3: Capacity Outage Probability Table Using Convulsion Algorithm 

Scenario Online 
Resources 

Offline 
Resources Threshold 

System 
Outage 

Probability 
1 ABCDE None 449 1 
2 BCDE A 399 0.18506963 
3 ACDE B 375 0.1330528 
4 ABDE C 357 0.09016173 
5 ABCE D 341 0.0562063 
6 CDE AB 325 0.03100226 
7 ABCD E 324 0.02826454 
8 BDE AC 307 0.0116333 
9 BCE AD 291 0.00946594 

10 ADE BC 283 0.00785717 
11 BCD AE 274 0.00607004 
12 ACE BD 267 0.00500847 
13 ACD BE 250 0.00368194 
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14 ABE CD 249 0.00280662 
15 DE ABC 233 0.00175645 
16 ABD CE 232 0.00164238 
17 CE ABD 217 0.00094941 
18 ABC DE 216 0.00086474 
19 CD ABE 200 0.00035037 
20 BE ACD 199 0.0002945 
21 BD ABE 182 0.00022746 
22 AE BCD 175 0.00018323 
23 BC ADE 166 0.00012796 
24 AD BCE 158 9.5128E-05 
25 AC BDE 142 5.8656E-05 
26 E ABCD 125 3.1584E-05 
27 AB CDE 124 2.8056E-05 
28 D ABCE 108 6.624E-06 
29 C ABDE 92 4.296E-06 
30 B ACDE 74 2.568E-06 
31 A BCDE 50 0.0000012 
32 None ABCDE 0 7.2E-08 

 
The failure probability in each scenario is the sum of event probabilities in Table 2 from 

that scenario to the last scenario (Scenario 32).  For example, if the load is more than 182 MW 
but less than 199 MW—that is, between Scenario 21 and Scenario 20—then the probability of a 
system outage can be calculated as the sum of the probabilities of Scenario 21 through Scenario 
32, which is 0.0227 percent.  

B. Data Description 

We acquire hourly load data for the PJM system for 2021, a total of 8760 hours (add 
reference).  We refer to this data series as the “gross load.”  The average gross load is 89,347 
MWh and the maximum gross load is 148,770 MWh.  The percentage standard deviation of the 
load data is 18.03 percent, and the skew is 0.793.  The positive skew indicates a skew towards 
higher load amounts.   

On the supply side, PJM also reports power contributions to the system per hour by 
resource type (add reference).  Relevant to our model, the data includes the quantity of solar 
power generated, the quantity of wind power generated, and the quantity of power delivered 
from storage for each hour of 2021. 
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For solar power, the mean generation quantity in the 2021 hourly data is 793 MWh and 
the maximum is 3455 MWh.  On average, solar generation is equal to 0.89% of load.  The 
percentage standard deviation of solar generation is 133.55% and its skew is 0.964.  The 
correlation between load and solar generation is -0.0259, which is very close to zero.  

For wind power, the mean generation quantity is 3153 MWh and the maximum is 8910 
MWh.  On average, wind generation is equal to 3.54% of load.  The percentage standard 
deviation of wind is 69.33% and its skew is 0.581.  The correlation between load and wind 
generation is -0.205.  The amount of  storage and storage power was negligible in PJM 2021, so 
similar numbers cannot be computed for storage. 

Solar and wind generation often occur at different times, as Figure X shows.  Solar 
generation is highest around noon and fades rapidly in the late afternoon.  Wind generation can 
take place at any time but may be slightly higher at night.  For the 2021 PJM data, the correlation 
between solar and wind generation is slightly negative, -0.1274.   

In addition to data regarding system load and power delivered to the system from solar, 
wind, and storage resources, our model also requires data regarding the quantity of solar, wind, 
and storage capacity in the PJM system.  PJM does not report nameplate capacity for solar and 
wind but instead reports values for “installed capacity” of solar and wind that are calculated 
based on recent years’ performance during peak summer periods (Levitt and Bell 2020).  As 
proxies for the actual nameplate capacities of PJM’s solar and wind resources, we use the 
maximum hourly quantity of solar generation and maximum hourly quantity of wind generation 
during 2021, which, as reported above, are 3455 MWh for solar power and 3153 MW of wind 
power.  Because the quantity of solar generation capacity can be greater than, but not below, the 
maximum hourly generation, this approach may slightly overestimate the ELCCs for wind and 
solar.   

C. Scaling the Load Data to the Model and Calculating Loss of Load 
Expectation 

To apply the Capacity Outage Probability Table (Table 3) to PJM, we need to scale the 
PJM load data to the size of the model as represented by the capacity values in the Table.  The 
often-used target for Loss of Load Expectation (LOLE) is one day per ten years, or 2.4 hours per 
year (add reference).  The scaling factor can be calculated as the number by which we can divide 
PJM gross load data to yield hourly load values that, using Table 3, create an annual LOLE of 
2.4 hours per year.  This scaling factor for our model for PJM in 2021 is 526.694—that is, if we 
divide the PJM hourly load values in 2021 by 526.694 and insert the resulting load numbers into 
Table 3, the estimated annual LOLE is 2.4 hours.  We use the scaling factor to scale the PJM 
gross load; solar and wind generation; and solar, wind, and storage capacity. 

After scaling the PJM load data to our model, we can calculate the hourly LOLE for the 
load data in the baseline scenario of the model.  The mean value of the hourly LOLE is 0.000274 
with a percentage standard deviation of 236.55% and a skew of 5.493.  A high skew implies that 
total outages are driven by relatively few positive outliers.  The highest hourly LOLE is 0.00607 
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(0.6%), which applies for capacities between 144,000 and 149,000 MW.  The lowest hourly 
LOLE is 6.624E-6, which applies to capacities between 57,000 and 65,000 MW, which is three 
orders of magnitude lower than the highest hourly LOLE.  Figure X shows the LOLEs at 
different levels of capacity. 

 

For levels of load below 105,000 MWh, the LOLE probability remains negligible.  At 
higher levels of load it rises quickly, so that when load reaches 144,000 MWh, the LOLE has 
increased by a ratio of over 17. 

It is commonly reported that as more renewable power is added to the system, the ELCC 
of that power source declines.  Figure 1 can give some intuition why that is the case.   For 
example, the slope of the LOLE line from 75,000 to 95,000 MWhs is only about 20 percent of 
the slope of the line from 95,000 to 115, 000 MWhs.  

Table 4 presents summary statistics for gross load, hourly LOLE, solar generation, and 
wind generation. 

Table 4: Summary Statistics for Model Baseline [scale down gross load] 

  Mean 
Standard 
Deviation 

% Standard 
Deviation Skew 

Gross Load 89,347.48 16,111.18 18.03% 0.793 
Hourly LOLE 2.740E-04 6.482E-04 236.55% 5.493 
Solar generation (MWh) 792.95 1,058.98 133.55% 0.964 
Wind Generation (MWh) 3,153.28 2,186.28 69.33% 0.581 

 

The percentage standard deviations for hourly LOLE and solar generation are above one 
hundred percent, implying they are quite variable.  For solar generation, this is likely due in part 
because there is no solar generation at night.  All four data sets have positive skew.  This implies 
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that the majority of the data points in each set are below the mean value, and that points above 
the mean may be relatively distant from the mean value.  For hourly LOLE, with a skew of 
nearly 5.5, positive skew may imply that the results are driven by a relatively small number of 
high-valued points. 

Table 5 presents the correlations between the data series.  Both the gross load and the 
outage probability are positively correlated with solar generation but negatively correlated with 
wind generation.  By itself, this implies that solar generation will be more valuable to the system 
than wind generation.  Solar and wind generation and negatively correlated, implying that the 
two types of energy might complement each other. 

Table 5: Correlations 

Correlation Outage 
Probability 

Solar 
Generation 

Wind 
Generation 

Gross Load 0.700 0.304 -0.205 
Outage Probability (LOLE)  0.264 -0.186 
Solar Generation   -0.127 

 

Figure X shows the percentage of LOLE, solar power, and wind power by hour for all 
hours across 2021.  (The numbers are similar when only using summer hours.)  The probability 
of LOLE is very low overnight.  It climbs gradually from Hour 5 to Hour 16, and then falls fairly 
rapidly until Hour 24.  Solar power has the expected bell-shaped curve, peaking at Hour 12.  
LOLE and solar power thus can be seen as four hours “out of phase.”   

 

 

0%
2%
4%
6%
8%

10%
12%

0 5 10 15 20
Time of Day

Figure Two
% Solar, LOLE, Wind All Hours

Solar LOLE Wind



Draft:  Please do not cite or quote. 

13 

IV. Applying the Convulsion Model   

This section calculates the ELCCs for solar, wind, and storage, under the assumption that 
each of these technologies is the first introduced into the system.  Thus, we evaluate the ELCC 
for solar without additional wind and battery power, the ELCC for wind without additional solar 
and battery power, and the ELCC for storage without additional solar and wind power. 

A. Calculating Solar ELCC 

As explained above in Part II, ELCC measures the additional load that a system can serve 
as more capacity is added to the system.  Accordingly, to calculate the ELCC for solar power, we 
start by estimating the additional load that the system can serve as more solar capacity is added 
(the “ELCC Addition”).  We exclude additional wind generation or storage to isolate the effects 
of additional solar capacity on the existing PJM system.  The model calculates the solar ELCC 
for ten successive increments of additional solar capacity, with each increment equal to the 
quantity of solar capacity existing in the PJM system in 2021.  Thus, after the final increment, 
the PJM system in the model would include eleven times the amount of solar capacity in the PJM 
system actually in place in 2021. 

To calculate the ELCC Addition for solar power using the capacity data, we add solar 
capacity to the system and estimate hourly solar power generation with the additional solar 
capacity by proportionately increasing solar generation for each hour of 2021.  Then, for each 
hour, we subtract the modeled quantity of solar generation from load, which reduces the LOLE 
for each hour.  We then add load to each hour until the LOLE returns to the target reliability 
level of 2.4 hours of outage per year.2  The additional load that can be served by the additional 
solar capacity is the ELCC Addition for that increment of solar power.   

Using the ELCC Addition, we calculate the ELCC using both an average and a marginal 
approach.  The Average ELCC reflects the additional load served as more solar capacity is added 
to the system.  Thus, to calculate the Average ELCC, we divide the  ELCC Addition for the 
increment by the total quantity of solar capacity added: 

 Average ELCC = ELCC Addition 
Total Additional Solar Capacity

 Eq. 1 

For example, applying Equation 1 to the fourth increment of additional solar capacity in Table 5 
yields the following calculation: 

 Average ELCC = ELCC Addition
Total Additional Solar Capacity

= 5339 MWh 
13,820 MW

 = 36.20 percent 𝐸𝐸𝐸𝐸. 2 

The Marginal ELCC reflects the additional load served by each increment of solar 
capacity.  To calculate the Marginal ELCC, we take the increase in ELCC Addition from the 
previous increment of solar capacity and divide by the incremental increase in solar capacity: 

 
2 All additions and subtractions in this and the next section are divided by the scaling factor to fit the 
convulsion model, and then rescaled back up to present the results at the scale of the PJM system. 
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 Marginal ELCC = Marginal ELCC Addition 
Marginal Solar Capacity

 Eq. 3 

For example, applying Equation 3 to the fourth increment of additional solar capacity in 
Table 5 yields the following equation: 

 Marginal ELCC = Marginal ELCC Addition
Marginal Solar Capacity

= (5339 MWh−4166 MWh)
3455 MW

 = 32.47 percent Eq. 4 

Table 5 reports the results of the Average and Marginal ELCC calculations for solar power. 

Table 5: Solar ELCCs 

Increment 

Capacity 
Added 
(MW) 

ELCC 
Addition 

(MW) 
Average 
ELCC 

Marginal 
ELCC 

1 3,455 1,374.67 39.79%   
2 6,910 2,691.41 38.95% 38.11% 
3 10,365 3,876.47 37.40% 34.30% 
4 13,820 5,003.59 36.20% 32.62% 
5 17,276 5,904.24 34.18% 26.07% 
6 20,731 6,847.02 33.03% 27.29% 
7 24,186 7,768.74 32.12% 26.68% 
8 27,641 8,574.58 31.02% 23.32% 
9 31,096 9,327.75 30.00% 21.80% 

10 34,551 9,980.85 28.89% 18.90% 
 

As Table 5 shows, both the Average Solar ELCC and the Marginal Solar ELCC decline 
quickly as solar capacity is added to the system.  When the solar capacity is added initially in the 
first increment, the solar ELCC is over 39 percent.  But for the final increment, when the solar 
penetration has increased to slightly below 9 percent of load, the Average ELCC has declined to 
29 percent, while the Marginal ELCC has declined all the way from 38 percent to below 19 
percent.  As compared to the gross load, the net load (the gross load minus the additional 
contribution of solar power plus the additional demand) standard deviation only declines slightly 
to 17.91%, but the skew declines from 0.793 to 0.239. The standard deviation of outage 
probability declines from 266 to 189 percent, while the skew declines from 5.493 to 0.180.  
These results are consistent with solar output being positively correlated with both gross load and 
outage probability, 
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B. Calculating Wind ELCC 

For wind power, as we did with solar power, we add an increment of wind capacity to the 
system and model the impact of this additional capacity on generation by proportionately 
increasing solar generation for each hour of 2021. We exclude additional solar generation or 
storage to isolate the effects of additional wind capacity on the existing PJM system.  To 
calculate the ELCC for wind power, we start by estimating the additional load that the system 
can serve as more wind capacity is added (the “ELCC Addition”).  Because there already are 
significant quantities of wind capacity in the PJM system, we model only five successive 
increments of additional wind capacity, with each increment equal to the quantity of wind 
capacity existing in the PJM system in 2021.   

We then calculate the ELCC for each of the five successive increments of PJM wind 
capacity, using the same method as with the solar ELCC.  Table 6 reports the results. 

Table 6:  Wind Generation ELCCs 

Increment 

Capacity 
Added 
(MW) 

ELCC 
Addition 

Average 
ELCC 

Marginal 
ELCC 

1 8,911 1,986 22.28%   
2 17,821 3,908 21.93% 21.57% 
3 26,732 5,609 20.98% 19.09% 
4 35,642 7,110 19.95% 16.85% 
5 44,553 8,469 19.01% 15.25% 

 

The first increment, which doubles the amount of wind capacity from the 2021 levels, has 
an ELCC of 22.28 percent.  Overall, the Average ELCC declines slightly over three percent, 
from 22.28 percent to 19.01 percent, as the remaining four increments are added.  Marginal 
ELCC declines slightly more, about 6.25 percent, from 21.57 percent to 15.25 percent.  Adding 
in wind power increases the percentage standard deviation of net load to 25.89% but decreases 
the skew to 0.532.  Increasing wind power by the amount indicated in the table above increases 
the percentage standard deviation of outage probabilities to 285 percent but decreases the skew 
to 0.364. 

B. Calculating Storage ELCC 

For storage ELCC, we exclude additional solar or wind generation to isolate the effects of 
additional storage (battery) capacity on the existing PJM system.  We then add storage power to 
the PJM system in increments, with each increment such that the available flow of power from 
storage in the system equals one percent of the average PJM load.  We do this for ten increments, 
in the end creating total storage with a flow equal to 10 percent of average PJM load.   

We assume that the batteries operate with 8 hours of flow capacity.  For each hour, we 
add the incremental power from storage in four separate steps.  At each step, our model allocates 
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1/32 of the battery power flow capacity to each of the eight hours with the highest load in the 
system.  Thus, one-quarter of the available flow capacity is added in four different steps.   This 
allocation attempts to simulate, with some simplification, the optimal use of battery power.   

As with the solar ELCC and wind ELCC, calculating the storage ELCC requires taking 
the amount of load served by power provided from storage and dividing it by the amount of 
storage capacity in the PJM system, with capacity measured as the maximum output of all 
storage resources in the system.  We then calculate the ELCC for each of the ten successive 
increments of PJM battery storage capacity by calculating the ELCC Addition, Average ELCC, 
and Marginal ELCC.  Table 7 reports the results. 

Table 7: Storage ELCCs 

Increment  

Flow 
Capacity 
(MWh) 

ELCC 
Addition 

Average 
ELCC  

Marginal 
ELCC 

1 893 695 77.51%   
2 1,787 1,288 71.79% 66.07% 
3 2,680 1,910 70.94% 69.25% 
4 3,574 2,434 67.82% 58.45% 
5 4,467 2,981 66.45% 60.99% 
6 5,361 3,506 65.12% 58.45% 
7 6,254 4,041 64.35% 59.72% 
8 7,148 4,560 63.53% 57.81% 
9 8,041 5,090 63.04% 59.09% 

10 8,935 5,637 62.83% 60.99% 
 

Average ELCC starts at over 77 percent but falls to slightly less than 63 percent.  The 
Marginal ELCC falls quickly to around 60 percent and stays near that level.  From the gross 
load, the net load percentage standard deviation declines slightly to 15.9%, while the skew 
declines slightly to 0.651. Battery usage has a correlation of 0.535 with gross load, 0.262 with 
solar generation, and -0.016 with wind generation. 

Unlike solar and wind, the ELCC for storage does not consistently decline.  This is likely 
because storage can be used strategically to address the highest demand hours, whenever they 
occur.  Solar and wind generation, by contrast, are constrained by the availability of sun or wind.  
In longer-run terms, it may imply that, even in grids with large amounts of storage, storage at the 
margin may be able to contribute to grid reliability. 
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V. Complementary Effects and Other Applications 

A. Complementary Effects 

The negative correlation between solar and wind power implies that adding solar power 
and wind power together may result in higher ELCCs than adding them separately.  Battery 
storage also can contribute power to the system at times that solar and wind power are less 
available.  In other words, solar, wind, and battery power may complement each other in ELCC 
calculations.  To model these effects, we analyzed the effect of wind and battery power on solar 
ELCCs, the effect of solar and battery power on wind ELCCs, and the effect of wind and batter 
power on solar ELCCs. 

To evaluate the effect of wind and battery power on solar ELCCs, we calculated the 
Average and Marginal ELCCs for solar at the ten increments, each reflecting a different level of 
solar penetration into the market, in a system that already included all five increments of 
additional wind power and ten increments of additional storage power.  As a measure of 
complementarity, we also calculated the amount by which the solar ELCC for each solar 
increment changed from the scenario in Section III.B.2 in which new wind power and battery 
power were excluded.  Table 8 reports the results.3  

Table 8: Complementary Effect of Wind and Battery Power on Solar ELCCs 

   ELCC Effects Complementary Effects 

Increment 
Solar Generation (% of 

load) 
Average 
ELCC 

Marginal 
ELCC 

Average 
ELCC 

Marginal 
ELCC 

1 0.89% 42.38%   2.59%   
2 1.77% 42.38% 42.38% 3.43% 4.27% 
3 2.66% 40.19% 35.82% 2.79% 1.52% 
4 3.55% 39.06% 35.67% 2.86% 3.05% 
5 4.44% 37.74% 32.47% 3.57% 6.40% 
6 5.32% 36.94% 32.93% 3.91% 5.64% 
7 6.21% 35.58% 27.44% 3.46% 0.76% 
8 7.10% 34.64% 28.05% 3.62% 4.73% 
9 7.99% 33.42% 23.63% 3.42% 1.83% 
10 8.87% 32.53% 24.54% 3.64% 5.64% 

 

 
3 When using all three power sources, the percentage standard deviation of net load is 21.77%, 
with a skew of 0.702.  The percentage standard deviation of outage percentage is 212.88 with a 
skew of 0.254. 
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The complementary effects are positive, though not terribly large, for each of the 
Average and Marginal ELCCs.  Average complementary effects run from 3.31 to 7.23 percent, 
as compared with marginal complementary effects from 0.87 to 6.41 percent.   

To evaluate the effect of solar and battery power on wind ELCCs, we calculated the 
Average and Marginal ELCCs for wind at the five increments, each reflecting a different level of 
wind penetration into the market, in a system that already included all ten increments of 
additional solar power and ten increments of additional storage power.  As a measure of 
complementarity, we also calculated the amount by which the wind ELCC for each wind 
increment changed from the scenario in Section III.B.2 in which new solar power and battery 
power were excluded.  Table 9 reports the results.  

Table 9: Complementary Effect of Wind and Battery Power on Solar ELCCs 

 Wind Generation 
(% of load) 

ELCC Effects Complementary Effects 
Increment Average Marginal Average Marginal 

1 3.53% 28.37%  6.09%  
2 7.06% 26.45% 24.53% 4.52% 2.96% 
3 10.59% 24.79% 21.46% 3.80% 2.36% 
4 14.12% 23.22% 18.50% 3.27% 1.66% 
5 17.65% 22.18% 18.03% 3.17% 2.78% 

 

Again, all complementary effects are positive but small, similar to the results for solar. 
The average complementary effect runs from 3.17 to 6.09 percent, while the marginal 
complementary effect is more narrowly bound, from 1.66 to 2.96 percent. 

To evaluate the effect of solar and wind power on storage ELCCs, we calculated the 
Average and Marginal ELCCs for battery storage at the ten increments, each reflecting a 
different level of storage penetration into the market, in a system that already included all ten 
increments of additional solar power and five increments of additional wind power.  As a 
measure of complementarity, we also calculated the amount by which the storage ELCC for each 
storage increment changed from the scenario in Section III.B.2 in which new solar power and 
wind power were excluded.  Table 10 reports the results.  
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Table 10: Complementary Effect of Solar and Wind Power on Storage ELCCs 

Increment 
Storage 

Capacity/Hour 
(% of load) 

ELCC Effects Complementary Effects 

Average Marginal Average Marginal 

1 1.00% 71.34%  -6.17%  
2 2.00% 68.61% 65.91% -3.18% -0.17% 
3 3.00% 69.25% 70.52% -1.69% 1.27% 
4 4.00% 70.04% 72.43% 2.22% 13.98% 
5 5.00% 69.00% 64.80% 2.54% 3.81% 
6 6.00% 68.61% 66.71% 3.49% 8.26% 
7 7.00% 68.34% 66.71% 3.99% 6.99% 
8 8.00% 68.38% 68.61% 4.84% 10.80% 
9 9.00% 68.33% 67.98% 5.29% 8.89% 

10 10.00% 67.34% 58.45% 4.51% -2.54% 
 

For storage, the complementary effects start out negative, and then become positive.  
(The marginal complementary effect becomes negative at step 10.)  These effects vary over 
wider ranges than the similar results for solar and wind. 

VI. The Delta Method 

PJM uses its “Delta Method” to calculate ELCC for wind, solar, storage, solar-storage 
hybrid, intermittent hydropower, and landfill gas (PJM 2021, 9).  The Delta Method attempts to 
capture the interactive effects of different resource technologies by calculating the difference 
between the overall ELCC for the portfolio of resources and the sum of the ELCCs of individual 
categories of resources.  The Delta Method adjusts each resource category’s “first-in” ELCC—
that is, its ELCC as calculated in the absence of other additional resources—upward or 
downward based the category’s ELCC’s synergistic or antagonistic interaction with other 
categories of resources in the system (Levitt 2020, 2).   
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We applied the Delta Method to our model, with the calculations presented in Table 11 
and then explained below.  We note that the total ELCC value of the added solar, wind, and 
storage in Part A above is 25,836 MW. 

Table 11: Delta Method Calculations 

 Definition Derivation Solar Wind  Storage Total 
A Capacity added (MW) Model output 34,551 44,552 8,290 87,393 
B Last-in ELCC (%) Model output 24.54% 18.03% 58.45%   
C First-in ELCC (%) Model output 39.79% 22.28% 77.51%   

D Delta ELCC (%) B - C 
-

15.25% -4.25% 
-

19.06%   
E Delta ELCC (MW) D * A -5,269 -1,893 -1,580 -8,743 

F 

% share Delta ELCC 
(MW) of Total ELCC 
(MW) Delta E/Total E 60.27% 21.66% 18.07%   

G 
ELCC amount implied by 
First-in ELCC A * C 13,748 9,926 6,426 30,100 

H 
Extra ELCC allocated to 
source (PDI share) (MW) F * "extra ELCC -2,570 -923 -771 -4,264 

I PDI share (%) H/A -7.44% -2.07% -9.30%   
J ELCC Rating C + I 32.35% 20.21% 68.21%   
K Implied ELCC Addition A * J = G + H 11,178 9,003 5,655 25,836 

 

Row A reports the total capacity added for each category of resources—solar, wind, and storage, 
from Tables 5, 6, and 7, are a total of 87,393 MW. 

Row B reports the Last-in ELCC percentage from the model for each category of resources as 
calculated in Section III.C and reported in Tables 8, 9 and 10. 

Row C reports the First-in ELCC percentage in the model for each category of resources as 
calculated in Section III.B and reported in Tables 6, 7 and 8. 

Row D is the change in ELCC percentage from First-in ELCC to Last-in ELCC, calculated as 
Row B minus Row C.  Thus, for solar, the Last-in ELCC % is 24.54%, the First-in ELCC is 
39.79, and so the value for this row is -15.25%. 

Row E is the additional amount of ELCC capacity implied by the change in ELCC percentage 
from the First-in ELCC to the Last-in ELCC.  It is calculated as the total capacity for the 
resource category times the change from First-in ELCC to Last-in ELCC—that is, Row A times 
Row D.  Thus, for solar, this equals 34,551 MW * (-15.25%) = -5,269MW.  Note the sum of this 
row across the three categories of solar, wind, and storage is -8,743 MW. 

Row F is each resource category’s share of the additional ELCC capacity from Row E.  For 
example, solar resources contribute 5,260, or 60.27%, of the additional 8,743 MW of capacity. 
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Row G is the amount of ELCC capacity by resource category implied by the First-in ELCC from 
Row C.  It is calculated as the First-in ELCC from Row C times the amount of additional 
capacity from Row A.  Thus, for solar, this is 39.79% times 34,551 MW = 13,748 MW.  The 
total across the three categories of solar, wind, and storage is 30,100 MW. 

At this point, it is necessary to calculate the “extra” ELCC implied by Row G.  As discussed in 
the beginning of the section, the model estimates that adding solar, wind, and storage to the 
system adds 25,836 MW of total ELCC.  As calculated in Row G, however, the sum of the 
ELCC capacities implied by the First-in ELCCs is 30,100 MW.  This implies that 30,100 - 
25,836 = 4264 MW of ELCC reductions must be allocated across the three categories. 

Row H reports how the overall ELCC adjustment is allocated to the categories, weighted by their 
share of the additional ELCC capacity from Row F.  For example, since Row F reports that solar 
resources account for 60.27% of the change in ELCC, the ELCC reduction allocated to solar is -
4264 * 60.27% = -2570 MW. 

Row I is the share of capacity of each resource category represented in Row H.  It equals the 
ELCC MW reduction in Row H divided by the additional capacity in Row A.  For solar, that 
equals -2,570 MW/34,551 MW, or -7.44%. 

Row J represents the “delta” ELCC, equal to the First-in ELCC % plus the adjustment calculated 
in Row I.  For solar, this is 39.79 - 7.44 = 32.35%. 

Finally, Row K shows the ELCC additions of each source, which can be calculated either as the 
additional capacity in Row A times the delta ELCC in Row J or as the sum of the ELCC implied 
by the First-in ELCC and the allocated ELCC adjustment from Row H. 

The ELCC ratings calculated in Table 11 correspond, albeit only roughly, to the ratings PJM has 
calculated (PJM 2021, 9).  For 2023, for example, PJM calculated the ELCC rating of onshore 
wind to be 15% as compared with the model’s result of 20%, the ELCC of fixed solar to be 38% 
and tracking solar to be 54% as compared with the model’s result of 32%, and the ELCC of four-
hour storage to be 83% as compared with the model’s result of 68%. 

In contrast, using our model, the delta method results would imply different ELCCs for solar, 
wind and storage than a marginal approach would, where the margin is all other resources 
installed before measuring the resource in question.  Table 12 compares the two results, using the 
complementary marginal results from Part A above. 
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Table 12:  Comparison of Marginal and Delta Methods 

  Solar Wind Storage 
Installed Capacity (MWs) 34,551 44,552 8,290 
Marginal ELCC % 24.54% 18.03% 58.45% 
Delta ELCC % 32.35% 20.21% 68.21% 
Marginal ELCC addition 
(MW) 8478.86 8032.73 4845.51 
Delta ELCC addition (MW) 11178.25 9002.76 5654.99 
Difference 2699.38 970.04 809.49 
% Difference 31.84% 12.08% 16.71% 

 

Using the delta method would have increased the ELCC ratings of each source significantly.  In 
particular, it would have increased the ELCC ratings of solar power by over 30 percent. 

 We also note that using marginal methods reduces the ELCC allocation for these three 
resources from 25,836 MW to 21,357 MW, or 4479 MW.  A potential problem in using marginal 
ELCCs is that they understate the total addition to reliability from added sources.  A method to 
alleviate this problem would be to reduce the overall demand for capacity by the relevant 
amount. 

VII. Comparing LOLE Probability Before and After Modeling 

We also calculate the hourly LOLE resulting after applying the increases in solar and 
wind power as well as the establishment of battery storage.  We refer to this as the “modeled” 
LOLE.  Figure X compares the baseline LOLE to the modeled LOLE by hour and shows the 
difference between the two series. 
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The difference between the baseline and modeled LOLE are small for the overnight 
hours.  Essentially, the increase in wind power is counterbalanced by the increase in load over 
this period.  The LOLE begins to fall as solar power increases, with the decline in LOLE 
reaching its highest level of 4.1% in Hour 15.  Past that hour, the decline in solar power (together 
with the increase in gross load to Hour 16) causes a rapid increase in the hourly LOLE 
percentage.  The modeled LOLE peaks at Hour 18 (12.74%), and at a much higher level than the 
baseload LOLE peak in Hour 16 (9.39%).  Positive changes in the LOLE% occur through the 
rest of the day.  This is caused in large part by solar power being four hours out of phase with 
gross load. 

VI. Conclusion 

A full ELCC model is very complex to build and to understand.  But a relatively simple 
model can be built, using the convulsion technique, that is both transparent to understand and 
shows the same impacts as a more sophisticated model. 

Here the simple model yields some important outcomes.  First, Average ELCC and 
Marginal ELCC can differ significantly.  Because the ELCC affects the capacity accreditation of 
a resource, and therefore the revenues it can earn in the capacity market, the consequence of a 
divergence between Average ELCC and Marginal ELCC is that the choice between the two 
approaches has significant impacts on revenues to resources.   

Second, Marginal ELCC can decline rapidly as renewable generation penetration in the 
system increases.  This seems especially important for solar power, probably because solar 
resources, without assistance from storage, are inherently limited to certain hours of the day.  
This prevents them from contributing to reliability at other hours when they are not available.  In 
contrast, storage, which has no such limitation, does not have similar declines in Marginal 
ELCC.   

Third, there are small but potentially important complementary effects caused by adding 
solar generation and wind generation.  

Fourth, adding on these resources changes the shape of the LOLE curve.  In particular, 
the threat of blackout is pushed three hours back, from Hour 16 to Hour 19 in the day.  In 
addition, the new peak LOLE period has a higher probability of a blackout than the peak period 
before the new resources were added. 
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